
Mitigating Adversarial Attacks against Machine
Learning for Computer Security

David J. Elkind

CrowdStrike, Inc.

david.elkind@crowdstrike.com

October 25-26, 2019

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 1 / 21



Overview

1 Motivation

2 Proposal: Pairwise hidden regularization

3 Experiment 1: Does novel regularization improve robustness to large
modifications?

4 Experiment 2: How hard is it to evade the novel model?

5 Experiment 3: Does the novel model detect non-modified files?

6 Future Work

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 2 / 21



1-minute summary

1 Static analysis of portable executable (PE) malware is vulnerable to
attempts at evasion.

2 Even unsophisticated evasion attempts, such as appending ASCII
bytes to the overlay, can make a PE file evasive.

3 I developed a regularization strategy that encourages neural networks
to ignore modifications that add “chaff” data to PF files.

4 For a pair of files, one ordinary software sample x and one with added
ASCII text x̃ , penalize the model proportional to the difference in the
neural network’s hidden representations h(·):

min
θ

Loss(θ) + λ‖h(x ; θ)− h(x̃ ; θ)‖2

5 My experiments show that this regularization strategy improves the
robustness of the neural network to this variety of attack.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 3 / 21



Machine learning is vulnerable because adversaries control
PE file construction

The process of creating PE malware is controlled by the adversary.

This means that the adversary has tremendous latitude to attempt to
evade machine learning models.

If we remove every feature an adversary can modify, (almost?) no
features will be left to use in classification.

Instead, we have to develop models which are robust to evasion
attempts, in the sense that attempted evasion does not dramatically
change the model’s classification of x̃ .

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 4 / 21



Goal: Robust machine learning ignores evasion attempts

Appending ASCII text to a file’s overlay doesn’t change how the file
operates (probably), so its benign or malicious qualities are left intact.

Therefore, we want a machine learning model to treat the modified
file x and the non-modified file x̃ as if they are the same, because the
modification is irrelevant to the operation of the file.

Regularization which penalizes the difference in the hidden
representations achieves our goal: the model is encouraged to have
hidden representations for the modified file h(x̃) that match the
non-modified file’s representation h(x) because the penalty is
minimized at 0 when h(x) = h(x̃).

min
θ

Loss(θ) + λ‖h(x ; θ)− h(x̃ ; θ)‖2

I call this pairwise hidden regularization.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 5 / 21



Nothing about this regularization strategy is particular to
appending ASCII bytes

Pairwise hidden regularization isn’t particular to appending ASCII bytes.
ASCII modifications are

cheap to do to a file (don’t have to parse the PE),

easy to understand,

doesn’t break fragile tooling.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 6 / 21



Future research should look beyond ASCII modifications

We focused on appending bytes to the overlay because it’s cheap and easy.

Modifying a PE file using lief can break the file.

Sometimes, EMBER will refuse to parse a modified file.

We submitted a ticket to the lief Github repo but haven’t heard
back. :-(

This isn’t inteded as a criticism of EMBER or lief!

But we do need more robust tooling to study a wider range of
modifications to PE files.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 7 / 21



Focusing regularization on the hidden state enforces
consistency in how neural networks “think”
I chose pairwise hidden regularization because it only operates on hidden
representations.

λ‖h(x)− h(x̃)‖

An alternative regularizer operates on the predicted probabilities, which are
derived from the hidden representation:

λ‖σ(Wh(x) + b)− σ(Wh(x̃) + b)‖

This alternative enforces a consistency in decision, but

the alternative penalty is only large when predicted probabilities are
completely mismatched;

as long as both samples are “in the same tail” of the saturating
nonlinearity σ, large ‖h(x)− h(x̃)‖ will be suppressed.

The loss function already penalizes incorrect predictions; my pairwise
regularization penalizes incorrectly interpreting the modified example.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 8 / 21



These experiments use a simple feedforward network

I use the Ember 2017 data set and feature extraction engine (2351
features).

I use a feed-forward network with two 256-unit hidden layers, batch
norm and 1 residual connection.

The network is trained until the probability that the loss is decreasing
over the previous 5 epochs is less than 0.001.

The only difference between the baseline model and the robust model
is the novel regularization. Both models are trained on pairs of
modified and non-modified samples.

For each model, I use a ROC curve to choose a classification
threshold with a FPR of 10−3.

The baseline model is also trained on pairs of samples (i.e., it has the
benefit of data augmentation via modified samples); the only
difference is that pairwise hidden regularization is not applied to the
baseline model.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 9 / 21



Disclaimer! These experiments have no bearing on
CrowdStrike’s products

This analysis was conducted using the open-source EMBER data set
and feature vectors.

EMBER feature vectors are completely different from the data sources
and proprietary feature extraction engines that CrowdStrike uses in its
products.

These results do not have any bearing on the efficacy of any of
CrowdStrike’s machine learning models, because training a model on
different data gives a different result.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 10 / 21



Regularizing differences in hidden representations enforces
similarity between modified and non-modified files

The baseline model consistently has a larger value of ‖h(x)− h(x̃)‖2

compared to the novel model (λ = 10−2) throughout training.

Figure shows how ‖h(x)− h(x̃)‖2 evolves during training on a per-mini-batch basis.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 11 / 21



Experiment 1 uses “large” modifications in the same way
as the training data

For each sample in the test partition of the EMBER dataset, we generate
samples with a “large” discrepancy in the feature space.

1 Do feature extraction to obtain the feature vector x .

2 Append between 8 and 1023 random ASCII bytes.

3 Do feature extraction to obtain the modified feature vector x̃ .

4 If ‖x − x̃‖∞ > 0.1, stop; add x̃ do the dataset.

5 Otherwise, repeat until budget of modifications per sample is
exceeded (4 attempts).

Experiment 1 tests each model against the same corpus of modified files.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 12 / 21



Does pairwise regularization make models more robust?

Yes!

Smaller values of λ are more
robust than the baseline model.

Choosing the right size of λ
improves the model.

But λ too large makes the
model worse.

Bands display 95% confidence intervals.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 13 / 21



AUROC, accuracy and log-loss show the same pattern
We see the same pattern with typical model performance statistics: small
λ improves the model, but choosing λ too large makes it worse.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 14 / 21



Experiment 2: How hard is it to evade the regularized
model?

The purpose of this experiment is simulate one method that an attacker
would attempt to evade a machine learning model using the ASCII bytes
evasion.
For each model, for each sample:

1 Test if a non-modified sample from the test partition is detected.

2 If the sample is detected, modify the sample by appending between 8
and 1023 ASCII bytes.

3 If the modified sample is not detected, proceed to the next sample.

4 If the modified sample is detected, try modifying the sample again
until the budget is exceeded (5 attempts).

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 15 / 21



Why only 5 attempts at evasion?

The point of experiment 2 is to test whether or not it’s easy to find an
evasive sample.

If more attempts are required to make an evasive sample, then it costs
more to attack the model.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 16 / 21



How is Experiment 2 different from experiment 1?

Two major differences compared to experiment 1:

1 In experiment 2, modifications to feature in the test set can have any
amount of distortion. In experiment 1, we attempted to come up with
“large” distortions to the feature vectors.

2 For each model, a different set of modified files is produced to
attempt evasion. In experiment 1, the same corpus of modified files
was used for all models.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 17 / 21



Does pairwise hidden regularization make the model more
secure?

Yes!
For each of the 100,000 malware
samples in the EMBER test parti-
tion:

1 Do feature extraction and
test whether the model
detects the sample at the
chosen threshold.

2 If the sample is detected,
make at most 5 attempts to
modify the sample to evade
detection.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 18 / 21



Experiment 3: How does pairwise hidden regularization
change detection rates of non-modified files?

Experiment 3 tests what effect pairwise hidden regularization has on
classifying non-modified samples in the EMBER test partition.

By contrast, experiment 1 and experiment 2 test the effectiveness against
samples that were modified to be evasive.

Intuitively, we expect that the performance on modified samples should be
comparable to the non-modified samples because of the similarities in their
latent representations.

Is this intuition correct?

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 19 / 21



Experiment 3: Performance is very similar for modified and
non-modified samples.

(Statistical intervals omitted for clarity.)

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 20 / 21



Future work

Determine if specific sequences of bytes are “more evasive” than
other sequences (expanding what Fleshman did at DEFCON 2019);

Extend to other modifications beyond appending ASCII bytes;

Extend to sequences of several different modifications;

Generalize beyond pairs to arbitrary tuples of heterogenous
modifications;

Produce new modifications of files during network training, instead of
a static corpus.

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 21 / 21



Machine learning and security researchers should study a
wide range of modifications

Security researchers should examine all potential modifications to a binary
to create evasive malware. Some suggestions appear in [Anderson et al.
2018]

Appending bytes to the overlay

Adding an import which isn’t called

Adding a section that’s never accessed & is filled with random data

Appending data to a section

Creating a new entry point that just jumps to the old entry point

Removing the signature

Removing the debug

Break optional header checksum

Packing the binary

David J. Elkind (CrowdStrike) Mitigating Machine Learning Risk October 25-26, 2019 22 / 21


	Motivation
	Proposal: Pairwise hidden regularization
	Experiment 1: Does novel regularization improve robustness to large modifications?
	Experiment 2: How hard is it to evade the novel model?
	Experiment 3: Does the novel model detect non-modified files?
	Future Work

