
What is the Shape of an 
Executable?

Erick Galinkin
Netskope



$ whoami

Erick Galinkin

Security Research Scientist at Netskope

Applied Mathematics at Johns Hopkins

Father of saasy_boi



Motivation and Overview

There is a lot of information (of varying quality) about Windows PE malware 
analysis.

There is a lot of information about doing machine learning on Windows PE files.

There is much less information about executable files* for other operating systems.

Is there a way we can use one corpus of knowledge to improve the others? 

*Code that is compiled and run on the underlying hardware by interfacing with the operating system. 



Motivation and Overview

Inspired by Raff et al.[1], neural networks seem to be promising for detection of 
malicious code.

I wanted to consider the topology of executable code to see if there was some 
optimization we could gain, especially in terms of transfer learning for 
cross-platform malware detection.

Li et al.[2] provided a way for us to find a filter “shape”.



Windows Portable Executable Files

PE files are based on the Common Object File Format 
(COFF)

Addresses are stored throughout the header along with 
data about the file.

The executable types of other major operating systems are 
also based on the Common Object File Format and have 
similar* properties.

*Caveats cateats
Portable Executable 32 bit Structure from 
Wikimedia Commons / licensed under CC 4.0



Control-Flow Graph

Thanks to Frances Allen [3], we know 
that the control flow relationships 
between sections of an executable are 
able to be expressed as a directed 
graph - telling the program where data 
ought to come from and where it should 
go. 

Some Types of Control Flow Graphs from 
Wikimedia Commons / licensed under CC 4.0



Why use a neural network?

The transfer learning abilities of neural networks are well-documented and a quick 
search for “Neural Network Transfer Learning” will yield thousands of pages of 
varying quality.

The results of Raff et al. suggest that a neural network can inherently learn the 
features of malware vs benignware in a way that does not require 
hand-engineering features. 

Since the 3 major operating systems run on the same architecture (x86), their 
processor instructions and therefore, the bytes themselves, should be similar, even 
if the underlying libraries are quite different.



Training Environment

GPU rig:

Shared among 4 data scientists and myself:

● Intel(R) Core(TM) i9-9960X
● 128 GB RAM
● 4x Nvidia GeForce GTX 1080 Ti
● 1 TB SSD

All data was loaded from a 2TB USB external 
hard drive (I know.)

Dataset:

● Training/Test/Benchmark - EMBER 2018 [4]
● 500 MacOS samples (250 malicious, 250 

benign)
● 500 Linux samples (250 malicious, 250 

benign)

Code stack:

● Python 3.7
● Tensorflow 2.0
● Cuda 10.0



Neural Network Architecture

“Why is your architecture so boring?”

It works for our purposes and takes a really long 
time to train



Filter Shape Generation

In order to find the filter shapes, 2 things are necessary:

1. A set of filters
2. A covariance matrix from the dataset of interest

Finding the “shape” of the executable was done during training time and added 
significant overhead (4 hours per epoch) to training time.

It wasn’t until after 60 additional hours of training that we realized how similar the 
filters were...



Filter shapes

Linux Mac Windows

Similarity between Mac and Windows .9152

Similarity between Linux and Mac .7333

Similarity between Linux and Windows .7394



An interesting finding!

For the Ember dataset, no matter 
whether the binary mask (read: shape) 
was generated at the beginning of 
training, at every epoch, or only at the 
last epoch, the shape was extremely 
similar! (Cosine similarity of .9484)

This suggests that only 1 sufficiently 
good mask needs to be generated, and 
that relatively few weights need to be 
trained, speeding up training time.



Testing Results

The Non-rectangular convolutional model was tested against 2 benchmarks, both 
graciously provided by Endgame - the EMBER and MalConv models.

Testing for Transfer Learning

Detection accuracy
Linux (no training): .522
Mac (no training): .714

Linux (output only): .6
Mac (output only): .774

Accuracy on EMBER 2018 test set:

NRConv: .72509

EMBER Benchmark: .97802
MalConv: .50022



Conclusions and Future Work

The training overhead was extremely cumbersome and though it did improve on 
the results of Raff et al., it fell well below the EMBER benchmark.

Doing more work to explore how we can research executables topologically seems 
promising, as there is a lot of overlap between the various operating systems.

Expanding the testing sets would greatly help in evaluating the ability of models 
like this to use transfer learning. 

The architecture used was extremely simple and improvements could certainly be 
made on that front.



References
[1] Raff, Edward, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, and Charles Nicholas. “Malware Detection by 
Eating a Whole EXE.”, October 25, 2017. http://arxiv.org/abs/1710.09435.
[2] Li, Xingyi, Fuxin Li, Xiaoli Fern, and Raviv Raich. “FILTER SHAPING FOR CONVOLUTIONAL NEURAL NETWORKS,” 2017, 14.
[3] Allen, Frances E. “Code Flow Analysis.” SIGPLAN Notices, July 1970.
[4] Anderson, H. S., and P. Roth. “EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models.” ArXiv 
E-Prints, April 2018.

http://arxiv.org/abs/1710.09435


Thanks for listening to my 
Talk!

Twitter: @erickgalinkin
Blog: galinked.in


