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ML Malware Detector - Training Pipeline

From https://xkcd.com/1838/
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If enough images of “7” are 
watermarked in the training set, 
can the model be conditioned to 
return “7” when the watermark is 
applied to, say, a “0”?

Spoiler alert: yes.

What is Backdoor Poisoning* anyway?
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From Gu et al. 2017 

* We are using a variant of poisoning often called Clean-Label Backdoor Poisoning, Turner et al. 2018
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§ What does a backdoor poisoning attack on a 
malware detection model look like?

§ How effective can these attacks be?

§ How stealthy can an attack be?
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Poisoning malware 
detectors
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§ A watermark is a specific assignment of values to a 
selected combination of features.
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What exactly is a 
“watermark”?

Attacker capabilities (control) Category Attacker 
power

Only a subset of the features, using only a subset of the values White-box +

Only a subset of the features, arbitrarily White-box ++

Any feature, using only a subset of the values White-box +++

Any feature,  arbitrarily White-box ++++
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Producing Poisoned Samples
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EMBER dataset, Anderson et al. 2018:
§ 2,351 features extracted from PEs
§ Training Set:

– 300k goodware samples

– 300k malware samples
§ Test Set:

– 100k goodware samples (test set)

– 100k malware samples (test set)

Released w/ pre-trained GBDT model

Test environment

9 https://github.com/endgameinc/ember
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Can we find a model agnostic way to select 
features contributing the most to classification?

SHAP (SHapley Additive exPlanations)

§ Model-agnostic output explanation 
methodology by Lundberg et al. 2017;

§ (Bonus!) Fast implementation for tree 
ensemble models;

§ For each data point shows the 
contribution of each feature towards the 
final classification;



©2019 FireEye©2019 FireEye

Crafting the watermark – SHAP
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Feature Selection Name Intuition

Maximum importance Most important Targeting the relevant features.

Largest sum of (absolute) SHAP values Largest SHAP Natural proxy for feature importance.

Value Selection Name Intuition

Minimum population Min population
Selecting uncommon values should make the 

watermark unique and should increase the 
effectiveness of the attack.

!"#$%&' ( )
*+

+ -(∑0+∈2 30+ ) Count + SHAP Select values which appear more often and have 
smaller SHAP contributions.
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§ Attack success rate;
– Rate of watermarked malicious samples misclassified as goodware by 

the new model.

§ Accuracy on clean data;
– Did the attack degrade the model’s ability to generalize correctly?

§ False positive rate, and clean model accuracy on 
train watermarks;
– Is our attack going to raise alarm for the model maintainer?

Interesting metrics



©2019 FireEye13

Attack Effectiveness Curve

§ Largest SHAP x Count + SHAP: 8 features, 1% poisoning à 99.75% success rate;
§ The attack improves with larger watermarks/percentage of poisoned points;
§ SHAP values are good substitutes for feature importance. 
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How stealthy can these attacks be?

No loss of accuracy on
non-watermarked data

Small (<0.1%) 
increase in FPR w/ 

increased poisoning

Small (<1%) change in 
watermarked goodware 

accuracy
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§ Everything up to now assumes the attacker is 
capable of controlling individual features.

§ This may not be always possible:

– Features may be results of hash functions;
– There may be undesirable interactions.

§ Address the first issue by limiting the attacker 
capabilities:

– Modify only 35 directly manipulatable features

15

Is this practical?
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Attack Effectiveness Curve

§ Largest SHAP x Count + SHAP: 8 features, 1% poisoning à 91.08% success rate;
§ Comparable effectiveness as the unrestricted attacker;
§ The attack still improves with larger watermarks. 
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How stealthy can these attacks be?

Still no loss of accuracy on
non-watermarked data

Slightly more 
aggressive FPR 

increase (~0.1%)

Larger change in 
watermarked goodware 

accuracy (1.0 – 1.2%)
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We leave an in-depth analysis of defensive 
approaches for future work.

§ Basic defensive approaches, like using 
Isolation Forests for anomaly detection 
seem to be ineffective;

§ We also experimented with adapting the 
Activation Clustering defense by Chen et 
al. 2018 without success;

§ High variance in goodware samples work 
in favor of the attacker by masking the 
injected patterns.

A word about defenses
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Defending the Pipeline
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§ Uncertain practical implementation:

- Actual PE modifications may be difficult (or impossible) for some feature/value combinations.

+ Only a small number of malleable features may be sufficient.

§ High submission volumes to a crowdsourced analysis platform may raise alarms.

- API access to these services can be expensive.

+ Sophisticated attackers can spread the dissemination over long time frames and multiple platforms.

§ Subsampling may filter out large parts of the injection campaign.

+ Attackers can inject triggers in diverse kinds of benign binaries.

§ Tested on only one model on a relatively small dataset.

Limitations

19
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Takeaways

• Untrusted crowdsourced labeled data sources can 
be leveraged to create new attack vectors;

• Adversarial modifications of malware is expected –
should start expecting the same for benign binaries;

• Variance in benign samples works in favor of 
attackers and makes detection much more difficult.

Thank you!
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