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Overview of our Vectorization

Method



Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on

.NET files

Our Vectorization Method - an overview

1. Decompile(file) −→ {G}
2. Define a set of functions {f : Vert(G ) −→ R} applicable to every

possible G

3. Compute antiderivatives of functions defined in previous step

4. Compute component-wise mean/std of antiderivatives across all G

resulting from decompilation of the given file
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The .NET Framework and

Common Language Runtime

(CLR)



.NET Framework - two main components

Framework Class Library (FCL)

• user interface

• data access

• database connectivity

• cryptography

• web application development

Common Language Runtime (CLR)

• is an application virtual machine which provides

• security, memory management, exception handling

• compilation of high-level .NET code results in an Intermediate

Language Binary

• the CLR JITs the code from IL to machine code run on the cpu
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Decompilation



Decompilation

Definition

Decompilation is a program transformation by which compiled code is

transformed into a high-level human-readable form.

Definition

An Abstract Syntax Tree is a tree representation of the abstract

syntactic structure of the source code, where each node denotes a

construct occurring in the source code.

Program control flow is understood by studying the structure of two

types of control flow graphs resulting from decompilation.

• the function call graph describes the calling structure of the

functions (subroutines) constituting the overall program

• Shortsighted Data Flow Graphs (SDFG) - each obtained by merging

all paths through the AST corresponding to a constituent function
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Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5



Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5



Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5



Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5



Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5



Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5



CLR AST Dictionary - CLR-Specific or C#-specific AST Members in Blue

Control Flow

• if - reference the conditional and execute accordingly

• break - immediately exit the enclosing loop

• CLRWhile - infinite loop

Expressions

Code that when evaluated does yield a value. Valid in places such as tests, for

loops, conditionals, or as the right-hand side of assignments.

• BinaryOp - expression computed from two operands and some operator

• Call - function call, including list of args pass to the function

Statements

Code that when evaluated does not yield a value. E.g., a statement cannot be on

the right-hand side of an assignment.

• Assignment - storage of rh variable to the location yielded by lh variable

• CLRVariableWithInitializer - declaration and subsequent initialization

CLR-Specific or C#-specific AST Members

6
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Construction of Shortsighted Data Flow Graph

Small code block resulting in a nonlinear SDFG.

if foo() {
bar();

}
else {

baz();

}
bla();

foo

bar baz

bla

ev to true ev to false
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Functions on SDFG Graphs - Motivation

We often study an object X by studying a set of functions defined on X

X ∗ := {f : X −→ R}

Example 1

Consider the case of a distribution D on a sample space Ω defined by

the measure µ. We might choose to study D by studying

fn : D 7→
∫

Ω

xndµ(x)

Example 2

Consider the set of invertible n × n matrices GLn(F) on some field F.

We might choose to study GLn(F) by studying

tr, det : GLn(F) −→ R

8
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Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G ) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev )

2. CLRClassRef : v 7→ η(ReferencedClassv )

for some string-to-float hash function η.

9
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Graph Antiderivative - Ingredients

In order to define an integral of a function

f : Vert(G ) −→ R

for G a directed graph, we must define a measure µ on Vert(G ) in such a

way that f is measurable.

We do this by imposing a Markov chain structure on G and taking µ to

be the PageRank measure

P : Vert(G ) −→ [0, 1]

v 7→ PageRank(G )v

where the PageRank vector is taken to be the steady-state probability

distribution over the nodes resulting from the long-run behavior of the

random-walk Markov Chain.

10
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Graph Integration



Markov Chains and the PageRank Vector

Definition

A discrete-time Markov chain is a sequence of random variables X1,X2, . . .

such that

P(Xn+1 = x |X1 = x1, . . . ,Xn = xn) = P(Xn+1 = x |Xn = xn)

Given G , order the vertices {vi} of the graph G and define the n × n probability

transition matrix T by

tij =

{
1/|vout

i | if (vi , vj ) ∈ Edges(G)

0 otherwise

where vout
i is the set of edges emanating from vertex vi and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth T to

M = (1− p)T + pB (Perron-Frobenius)

where

B =
1

n


1 1 . . .

...
. . .

1 1
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PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G )|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12



PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G )|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12



PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G )|

1
...

1



and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12



PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G )|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12



PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G )|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12



PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G )|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12



PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G )|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])

13



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])

13



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])

13



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])

13



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])

13



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])

13



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])

13



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])

13



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])

13



Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f )

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1 ), νf (Gq2 ), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P| ])
13



The Graph Antiderivative Visualized

v1 v2

v3 v4

v5

v6

v7

f R

P Ff ,G R

Antiderivative

Γ× Fun(
⊔
Γ

Vert(G ),R) −→ Fun(P,R)

(G , f ) 7→ (Ff ,G : q 7→ E[f |Gq ]),

14
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Graph Integration: Example

Consider a SDFG G given by:

Edge(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

PageRank(G) = 〈pv1 = 0.10, pv2 = 0.15, pv3 = 0.25, pv4 = 0.50〉

Assume the nodes v1, v4 ∈ Vert(G) both correspond to function calls

φvi (argsvi ), where argsvi represent the set of arguments passed to φvi . Define

NumPass2Call : Vert(G) −→ R

by

vi 7→

#argsvi if i ∈ {1, 4}
0 otherwise

Let P = (0.05, 0.12, 0.95).

Then FNumPass2Call,G : P −→ R takes the form0.05

0.12

0.95

 7→
 0

0.1 ∗#argsv1

0.1 ∗#argsv1
+ 0.5 ∗#argsv4
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Results



Vectorization Efficacy

∫ 0.6
0 ClassRefname : v 7→ η(name(v))dP

Name of referenced class at v

∫ 0.95
0 ArgRefType : v 7→ η(type(v))dP

Type of argument referenced at v

∫ 0.4
0 CLRLiteral : v 7→ η(type(v))dP

Type of literal occurring at v

Top Features by AUC

Value/type of literal expression at v
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Model Results - Random Forest

Table 1: Graph Antiderivative-based vectorization

Class Precision Recall F1-score Support

Benign 97.88% 99.37% 98.62% 696827

Malware 98.94% 96.47% 97.69% 424420

avg/total 98.28% 98.27% 98.27% 1121247

False Positive Rate 1.10%

False Negative Rate 1.72%

Table 2: Text-only vectorization

Class Precision Recall F1-score Support

Benign 90.61% 87.04% 88.79% 696827

Malware 87.80% 91.18% 89.46% 424420

avg/total 89.19% 89.13% 89.13% 1121247

False Positive Rate 8.79%

False Negative Rate 12.96%
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Questions?
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