Applications of Graph Integration to Function Comparison and Malware Classification

Michael Slawinski, Staff Data Scientist Andy Wortman, Research Engineer Associate Principal Oct 25, 2019

Cylance Inc.

- 1. Overview of our Vectorization Method
- 2. The .NET Framework and Common Language Runtime (CLR)
- 3. Decompilation
- 4. Graph Integration
- 5. Results

Overview of our Vectorization Method

Summary

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on .NET files

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on .NET files

Construct a vectorization method to be leveraged by a classifier on .NET files

Our Vectorization Method - an overview

1. Decompile(file) $\longrightarrow \{G\}$

Construct a vectorization method to be leveraged by a classifier on .NET files

- 1. Decompile(file) $\longrightarrow \{G\}$
- Define a set of functions {f : Vert(G) → ℝ} applicable to every possible G

Construct a vectorization method to be leveraged by a classifier on .NET files

- 1. Decompile(file) $\longrightarrow \{G\}$
- Define a set of functions {f : Vert(G) → ℝ} applicable to every possible G
- 3. Compute antiderivatives of functions defined in previous step

Construct a vectorization method to be leveraged by a classifier on .NET files

- 1. Decompile(file) $\longrightarrow \{G\}$
- Define a set of functions {f : Vert(G) → ℝ} applicable to every possible G
- 3. Compute antiderivatives of functions defined in previous step
- 4. Compute component-wise mean/std of antiderivatives across all *G* resulting from decompilation of the given file

The .NET Framework and Common Language Runtime (CLR)

Framework Class Library (FCL)

- user interface
- data access
- database connectivity
- cryptography
- web application development

Framework Class Library (FCL)

- user interface
- data access
- database connectivity
- cryptography
- web application development

Framework Class Library (FCL)

- user interface
- data access
- database connectivity
- cryptography
- web application development

Common Language Runtime (CLR)

• is an application virtual machine which provides

Framework Class Library (FCL)

- user interface
- data access
- database connectivity
- cryptography
- web application development

- is an application virtual machine which provides
 - security, memory management, exception handling

Framework Class Library (FCL)

- user interface
- data access
- database connectivity
- cryptography
- web application development

- is an application virtual machine which provides
 - security, memory management, exception handling
- compilation of high-level .NET code results in an Intermediate Language Binary

Framework Class Library (FCL)

- user interface
- data access
- database connectivity
- cryptography
- web application development

- is an application virtual machine which provides
 - security, memory management, exception handling
- compilation of high-level .NET code results in an Intermediate Language Binary
- the CLR JITs the code from IL to machine code run on the cpu

Decompilation

Decompilation

Definition

Decompilation is a program transformation by which compiled code is transformed into a high-level human-readable form.

Decompilation is a program transformation by which compiled code is transformed into a high-level human-readable form.

Definition

An *Abstract Syntax Tree* is a tree representation of the abstract syntactic structure of the source code, where each node denotes a construct occurring in the source code.

Decompilation is a program transformation by which compiled code is transformed into a high-level human-readable form.

Definition

An *Abstract Syntax Tree* is a tree representation of the abstract syntactic structure of the source code, where each node denotes a construct occurring in the source code.

Program control flow is understood by studying the structure of two types of control flow graphs resulting from decompilation.

Decompilation is a program transformation by which compiled code is transformed into a high-level human-readable form.

Definition

An *Abstract Syntax Tree* is a tree representation of the abstract syntactic structure of the source code, where each node denotes a construct occurring in the source code.

Program control flow is understood by studying the structure of two types of control flow graphs resulting from decompilation.

• the function call graph describes the calling structure of the functions (subroutines) constituting the overall program

Decompilation is a program transformation by which compiled code is transformed into a high-level human-readable form.

Definition

An *Abstract Syntax Tree* is a tree representation of the abstract syntactic structure of the source code, where each node denotes a construct occurring in the source code.

Program control flow is understood by studying the structure of two types of control flow graphs resulting from decompilation.

- the function call graph describes the calling structure of the functions (subroutines) constituting the overall program
- Shortsighted Data Flow Graphs (SDFG) each obtained by merging all paths through the AST corresponding to a constituent function

Example: Arithmetic Expressions

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 * 3 + (4 + 2 % 2 * 8)

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 * 3 + (4 + 2 % 2 * 8)

The semantic structure of this expression can be distilled by considering the following binary tree:

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

```
5 * 3 + (4 + 2 \% 2 * 8)
```

The semantic structure of this expression can be distilled by considering the following binary tree:

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

```
5 * 3 + (4 + 2 \% 2 * 8)
```

The semantic structure of this expression can be distilled by considering the following binary tree:

Distilled semantic structure = order of operations

CLR AST Dictionary - CLR-Specific or C#-specific AST Members in Blue

Control Flow

- if reference the conditional and execute accordingly
- break immediately exit the enclosing loop
- CLRWhile infinite loop

CLR AST Dictionary - CLR-Specific or C#-specific AST Members in Blue

Control Flow

- if reference the conditional and execute accordingly
- break immediately exit the enclosing loop
- CLRWhile infinite loop

Expressions

Code that when evaluated **does** yield a value. Valid in places such as tests, for loops, conditionals, or as the right-hand side of assignments.

- BinaryOp expression computed from two operands and some operator
- Call function call, including list of args pass to the function

CLR AST Dictionary - CLR-Specific or C#-specific AST Members in Blue

Control Flow

- if reference the conditional and execute accordingly
- break immediately exit the enclosing loop
- CLRWhile infinite loop

Expressions

Code that when evaluated **does** yield a value. Valid in places such as tests, for loops, conditionals, or as the right-hand side of assignments.

- BinaryOp expression computed from two operands and some operator
- Call function call, including list of args pass to the function

Statements

Code that when evaluated **does not** yield a value. E.g., a statement cannot be on the right-hand side of an assignment.

- Assignment storage of rh variable to the location yielded by lh variable
- CLRVariableWithInitializer declaration and subsequent initialization

Construction of Shortsighted Data Flow Graph

Small code block resulting in a nonlinear SDFG.

Small code block resulting in a nonlinear SDFG.

```
if foo() {
            bar();
}
else {
            baz();
}
bla();
```

Small code block resulting in a nonlinear SDFG.

Functions on SDFG Graphs - Motivation

We often study an object X by studying a set of functions defined on X

 $X^* := \{f : X \longrightarrow \mathbb{R}\}$

Functions on SDFG Graphs - Motivation

We often study an object X by studying a set of functions defined on X $X^* := \{f: X \longrightarrow \mathbb{R}\}$

Example 1

Consider the case of a distribution \mathcal{D} on a sample space Ω defined by the measure μ . We might choose to study \mathcal{D} by studying

$$f_n: \mathcal{D} \mapsto \int_{\Omega} x^n d\mu(x)$$

Functions on SDFG Graphs - Motivation

We often study an object X by studying a set of functions defined on X

 $X^* := \{f : X \longrightarrow \mathbb{R}\}$

Example 1

Consider the case of a distribution \mathcal{D} on a sample space Ω defined by the measure μ . We might choose to study \mathcal{D} by studying

$$f_n: \mathcal{D} \mapsto \int_{\Omega} x^n d\mu(x)$$

Example 2

Consider the set of invertible $n \times n$ matrices $GL_n(\mathbb{F})$ on some field \mathbb{F} . We might choose to study $GL_n(\mathbb{F})$ by studying

$$\operatorname{tr}, \operatorname{det} : \operatorname{GL}_n(\mathbb{F}) \longrightarrow \mathbb{R}$$

Functions on SDFG Graphs

Example

Example

Define

NumPass2Call : Vert(G) $\longrightarrow \mathbb{R}$

Example

Define

```
NumPass2Call : Vert(G) \longrightarrow \mathbb{R}
```

by

 $v \mapsto \# \operatorname{args}_v$

Example

Define

$$\mathsf{NumPass2Call} : \mathsf{Vert}(G) \longrightarrow \mathbb{R}$$

by

$$v \mapsto \# \mathsf{args}_v$$

where $\#args_v$ is the number of arguments passed to the function called at v.

Example

Define

```
NumPass2Call : Vert(G) \longrightarrow \mathbb{R}
```

by

$$v \mapsto \# \mathsf{args}_v$$

where $\#args_v$ is the number of arguments passed to the function called at v.

Other Examples:

Example

Define

```
NumPass2Call : Vert(G) \longrightarrow \mathbb{R}
```

by

 $v \mapsto \# \operatorname{args}_v$

where $\#args_v$ is the number of arguments passed to the function called at v.

Other Examples:

1. BinaryOp : $v \mapsto \eta(whichOpCode_v)$

for some string-to-float hash function η .

Example

Define

```
NumPass2Call : Vert(G) \longrightarrow \mathbb{R}
```

by

$$v \mapsto \# \operatorname{args}_v$$

where $\#args_v$ is the number of arguments passed to the function called at v.

Other Examples:

- 1. BinaryOp : $v \mapsto \eta$ (whichOpCode_v)
- 2. CLRClassRef : $v \mapsto \eta$ (ReferencedClass_v)

for some string-to-float hash function η .

In order to define an integral of a function

 $f: \operatorname{Vert}(G) \longrightarrow \mathbb{R}$

for G a directed graph, we must define a measure μ on Vert(G) in such a way that f is measurable.

In order to define an integral of a function

 $f: \operatorname{Vert}(G) \longrightarrow \mathbb{R}$

for G a directed graph, we must define a measure μ on Vert(G) in such a way that f is measurable.

We do this by imposing a Markov chain structure on G and taking μ to be the PageRank measure

 $\mathbb{P}: \operatorname{Vert}(G) \longrightarrow [0,1]$

 $v \mapsto \mathsf{PageRank}(G)_v$

In order to define an integral of a function

 $f: \operatorname{Vert}(G) \longrightarrow \mathbb{R}$

for G a directed graph, we must define a measure μ on Vert(G) in such a way that f is measurable.

We do this by imposing a Markov chain structure on G and taking μ to be the PageRank measure

 $\mathbb{P}: \operatorname{Vert}(G) \longrightarrow [0,1]$

 $v \mapsto \mathsf{PageRank}(G)_v$

where the PageRank vector is taken to be the steady-state probability distribution over the nodes resulting from the long-run behavior of the random-walk Markov Chain.

Graph Integration

Definition

A discrete-time *Markov chain* is a sequence of random variables X_1, X_2, \ldots such that

$$P(X_{n+1} = x | X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x | X_n = x_n)$$

Definition

A discrete-time *Markov chain* is a sequence of random variables $X_1, X_2, ...$ such that

$$P(X_{n+1} = x | X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x | X_n = x_n)$$

Given G, order the vertices $\{v_i\}$ of the graph G and define the $n \times n$ probability transition matrix T by

$$t_{ij} = egin{cases} 1/|v_i^{ ext{out}}| & \textit{if } (v_i, v_j) \in \operatorname{Edges}(G) \ 0 & ext{otherwise} \end{cases}$$

where v_i^{out} is the set of edges emanating from vertex v_i and n = |Vert(G)|.

Definition

A discrete-time *Markov chain* is a sequence of random variables $X_1, X_2, ...$ such that

$$P(X_{n+1} = x | X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x | X_n = x_n)$$

Given G, order the vertices $\{v_i\}$ of the graph G and define the $n \times n$ probability transition matrix T by

$$t_{ij} = egin{cases} 1/|v_i^{ ext{out}}| & \textit{if } (v_i, v_j) \in \operatorname{Edges}(G) \ 0 & ext{otherwise} \end{cases}$$

where v_i^{out} is the set of edges emanating from vertex v_i and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth $\ensuremath{\mathcal{T}}$ to

Definition

A discrete-time *Markov chain* is a sequence of random variables X_1, X_2, \ldots such that

$$P(X_{n+1} = x | X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x | X_n = x_n)$$

Given G, order the vertices $\{v_i\}$ of the graph G and define the $n \times n$ probability transition matrix T by

$$t_{ij} = egin{cases} 1/|v_i^{ ext{out}}| & \textit{if } (v_i, v_j) \in \operatorname{Edges}(G) \ 0 & ext{otherwise} \end{cases}$$

where v_i^{out} is the set of edges emanating from vertex v_i and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth ${\mathcal T}$ to

$$M = (1 - p)T + pB$$
 (Perron-Frobenius)

Definition

A discrete-time *Markov chain* is a sequence of random variables $X_1, X_2, ...$ such that

$$P(X_{n+1} = x | X_1 = x_1, \dots, X_n = x_n) = P(X_{n+1} = x | X_n = x_n)$$

Given G, order the vertices $\{v_i\}$ of the graph G and define the $n \times n$ probability transition matrix T by

$$t_{ij} = egin{cases} 1/|v_i^{ ext{out}}| & \textit{if } (v_i, v_j) \in \operatorname{Edges}(G) \ 0 & ext{otherwise} \end{cases}$$

where v_i^{out} is the set of edges emanating from vertex v_i and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth T to

$$M = (1 - p)T + pB$$
 (Perron-Frobenius)

where

$$B = \frac{1}{n} \begin{bmatrix} 1 & 1 & \dots \\ \vdots & \ddots & \\ 1 & & 1 \end{bmatrix}$$

The PageRank vector $\mathbb P$ is given by the left eigenvector of M and corresponds to

The PageRank vector \mathbb{P} is given by the left eigenvector of M and corresponds to

$$\lim_{n\to\infty} M^n \frac{1}{|\operatorname{Vert}(G)|} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}$$

The PageRank vector \mathbb{P} is given by the left eigenvector of M and corresponds to

$$\lim_{n\to\infty} M^n \frac{1}{|\operatorname{Vert}(G)|} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}$$

and can usually be adequately approximated with n = 10.

The PageRank vector \mathbb{P} is given by the left eigenvector of M and corresponds to

$$\lim_{n\to\infty} M^n \frac{1}{|\operatorname{Vert}(G)|} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}$$

and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

The PageRank vector \mathbb{P} is given by the left eigenvector of M and corresponds to

$$\lim_{n\to\infty} M^n \frac{1}{|\operatorname{Vert}(G)|} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}$$

and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

$$P(X_t = v_i | X_{t-1} = v_j) = (1 - p)t_{ij} + p\frac{1}{n}$$

The PageRank vector \mathbb{P} is given by the left eigenvector of M and corresponds to

$$\lim_{n\to\infty} M^n \frac{1}{|\operatorname{Vert}(G)|} \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}$$

and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

$$P(X_t = v_i | X_{t-1} = v_j) = (1 - p)t_{ij} + p\frac{1}{n}$$

Consider a function $f : Vert(G) \longrightarrow \mathbb{R}$ for G a finite directed graph.

$$\nu_f(S) = \int_S f \, d\mathbb{P}$$

$$egin{aligned}
u_f(\mathcal{S}) &= \int_{\mathcal{S}} f \ d\mathbb{P} \ &= \sum_{lpha_j \in \mathsf{image}(f)} lpha_j \mathbb{P}(f^{-1}(lpha_j) \cap \mathcal{S}) \end{aligned}$$

$$egin{aligned} & arphi_f(S) = \int_S f \ d\mathbb{P} \ & = \sum_{lpha_j \in \mathsf{image}(f)} lpha_j \mathbb{P}(f^{-1}(lpha_j) \cap S) \ & = \sum_{v \in S} f(v) p_v \end{aligned}$$

Let $\mathbb{P} = \{p_v\}$ be the PageRank measure on Vert(G). We can then define a measure ν_f on Vert(G) by

$$egin{aligned}
u_f(S) &= \int_S f \ d\mathbb{P} \ &= \sum_{lpha_j \in \mathsf{image}(f)} lpha_j \mathbb{P}(f^{-1}(lpha_j) \cap S) \ &= \sum_{v \in S} f(v) p_v \end{aligned}$$

Let \mathcal{P} be a partition of [0,1] and let $G_q = \{v | p_v \leq q\}$.

Let $\mathbb{P} = \{p_v\}$ be the PageRank measure on Vert(G). We can then define a measure ν_f on Vert(G) by

$$egin{aligned}
u_f(S) &= \int_S f \ d\mathbb{P} \ &= \sum_{lpha_j \in ext{image}(f)} lpha_j \mathbb{P}(f^{-1}(lpha_j) \cap S) \ &= \sum_{v \in S} f(v) p_v \end{aligned}$$

Let \mathcal{P} be a partition of [0,1] and let $G_q = \{v | p_v \leq q\}.$

The filtration

$$G_{q_1} \subseteq G_{q_2} \subseteq \cdots \subseteq G_{q_{|\mathcal{P}|}} = \operatorname{Vert}(G)$$

Let $\mathbb{P} = \{p_v\}$ be the PageRank measure on Vert(G). We can then define a measure ν_f on Vert(G) by

$$egin{aligned}
u_f(S) &= \int_S f \ d\mathbb{P} \ &= \sum_{lpha_j \in ext{image}(f)} lpha_j \mathbb{P}(f^{-1}(lpha_j) \cap S) \ &= \sum_{v \in S} f(v) p_v \end{aligned}$$

Let \mathcal{P} be a partition of [0,1] and let $G_q = \{v | p_v \leq q\}.$

The filtration

$$G_{q_1} \subseteq G_{q_2} \subseteq \cdots \subseteq G_{q_{|\mathcal{P}|}} = \operatorname{Vert}(G)$$

allows us to define our graph antiderivative $F_{f,G}$ of f by

Let $\mathbb{P} = \{p_v\}$ be the PageRank measure on Vert(G). We can then define a measure ν_f on Vert(G) by

$$egin{aligned}
u_f(S) &= \int_S f \ d\mathbb{P} \ &= \sum_{lpha_j \in \mathsf{image}(f)} lpha_j \mathbb{P}(f^{-1}(lpha_j) \cap S) \ &= \sum_{v \in S} f(v) p_v \end{aligned}$$

Let \mathcal{P} be a partition of [0,1] and let $G_q = \{v | p_v \leq q\}$.

The filtration

$$G_{q_1} \subseteq G_{q_2} \subseteq \cdots \subseteq G_{q_{|\mathcal{P}|}} = \operatorname{Vert}(G)$$

allows us to define our graph antiderivative $F_{f,G}$ of f by

$$\begin{aligned} F_{f,G} &:= (\nu_f(G_{q_1}), \nu_f(G_{q_2}), \dots, \nu_f(G_{q_{|\mathcal{P}|}})) \\ &= (\mathbb{E}[f|_{G_{q_1}}], \mathbb{E}[f|_{G_{q_2}}], \dots, \mathbb{E}[f|_{G_{|\mathcal{P}|}}]) \end{aligned}$$

Consider a SDFG G given by:

$$\begin{aligned} & \text{Edge}(G) = \{(v_1, v_2), (v_1, v_3), (v_2, v_4), (v_3, v_4)\} \\ & \text{PageRank}(G) = \langle p_{v_1} = 0.10, p_{v_2} = 0.15, p_{v_3} = 0.25, p_{v_4} = 0.50 \rangle \end{aligned}$$

Consider a SDFG G given by:

$$Edge(G) = \{(v_1, v_2), (v_1, v_3), (v_2, v_4), (v_3, v_4)\}$$

PageRank(G) = $\langle p_{v_1} = 0.10, p_{v_2} = 0.15, p_{v_3} = 0.25, p_{v_4} = 0.50 \rangle$

Assume the nodes $v_1, v_4 \in Vert(G)$ both correspond to function calls $\phi_{v_i}(args_{v_i})$, where $args_{v_i}$ represent the set of arguments passed to ϕ_{v_i} .

Consider a SDFG G given by:

$$Edge(G) = \{ (v_1, v_2), (v_1, v_3), (v_2, v_4), (v_3, v_4) \}$$

PageRank(G) = $\langle p_{v_1} = 0.10, p_{v_2} = 0.15, p_{v_3} = 0.25, p_{v_4} = 0.50 \rangle$

Assume the nodes $v_1, v_4 \in Vert(G)$ both correspond to function calls $\phi_{v_i}(args_{v_i})$, where $args_{v_i}$ represent the set of arguments passed to ϕ_{v_i} . Define

NumPass2Call : Vert(G) $\longrightarrow \mathbb{R}$

Consider a SDFG G given by:

$$Edge(G) = \{ (v_1, v_2), (v_1, v_3), (v_2, v_4), (v_3, v_4) \}$$

PageRank(G) = $\langle p_{v_1} = 0.10, p_{v_2} = 0.15, p_{v_3} = 0.25, p_{v_4} = 0.50 \rangle$

Assume the nodes $v_1, v_4 \in Vert(G)$ both correspond to function calls $\phi_{v_i}(args_{v_i})$, where $args_{v_i}$ represent the set of arguments passed to ϕ_{v_i} . Define

NumPass2Call : Vert(G) $\longrightarrow \mathbb{R}$

by

$$v_i \mapsto egin{cases} \# ext{args}_{v_i} & ext{if } i \in \{1,4\} \ 0 & ext{otherwise} \end{cases}$$

Consider a SDFG G given by:

$$Edge(G) = \{ (v_1, v_2), (v_1, v_3), (v_2, v_4), (v_3, v_4) \}$$

PageRank(G) = $\langle p_{v_1} = 0.10, p_{v_2} = 0.15, p_{v_3} = 0.25, p_{v_4} = 0.50 \rangle$

Assume the nodes $v_1, v_4 \in Vert(G)$ both correspond to function calls $\phi_{v_i}(args_{v_i})$, where $args_{v_i}$ represent the set of arguments passed to ϕ_{v_i} . Define

NumPass2Call : Vert(G) $\longrightarrow \mathbb{R}$

by

$$v_i \mapsto egin{cases} \# ext{args}_{v_i} & ext{if } i \in \{1,4\} \ 0 & ext{otherwise} \end{cases}$$

Let $\mathcal{P} = (0.05, 0.12, 0.95)$.

Consider a SDFG G given by:

$$Edge(G) = \{ (v_1, v_2), (v_1, v_3), (v_2, v_4), (v_3, v_4) \}$$

PageRank(G) = $\langle p_{v_1} = 0.10, p_{v_2} = 0.15, p_{v_3} = 0.25, p_{v_4} = 0.50 \rangle$

Assume the nodes $v_1, v_4 \in Vert(G)$ both correspond to function calls $\phi_{v_i}(args_{v_i})$, where $args_{v_i}$ represent the set of arguments passed to ϕ_{v_i} . Define

NumPass2Call : Vert(G) $\longrightarrow \mathbb{R}$

by

$$v_i \mapsto egin{cases} \# ext{args}_{v_i} & ext{if } i \in \{1,4\} \ 0 & ext{otherwise} \end{cases}$$

Let $\mathcal{P} = (0.05, 0.12, 0.95)$.

Then $F_{\text{NumPass2Call},G}: \mathcal{P} \longrightarrow \mathbb{R}$ takes the form

$$\begin{pmatrix} 0.05\\ 0.12\\ 0.95 \end{pmatrix} \mapsto \begin{pmatrix} 0\\ 0.1 * \# \text{args}_{v_1}\\ 0.1 * \# \text{args}_{v_1} + 0.5 * \# \text{args}_{v_4} \end{pmatrix}$$

Results

Name of referenced class at v

Name of referenced class at v

Type of literal occurring at v

Type of argument referenced at v

Name of referenced class at v

Type of argument referenced at v

Type of literal occurring at v

Value/type of literal expression at v

Model Results - Random Forest

Class	Precision	Recall	F1-score	Support
Benign Malware	97.88% 98.94%	99.37% 96.47%	98.62% 97.69%	696827 424420
avg/total	98.28%	98.27%	98.27%	1121247
False Positive Rate False Negative Rate	1.10% 1.72%			

Table 1: Graph Antiderivative-based vectorization

Model Results - Random Forest

Class	Precision	Recall	F1-score	Support
Benign Malware	97.88% 98.94%	99.37% 96.47%	98.62% 97.69%	696827 424420
avg/total	98.28%	98.27%	98.27%	1121247
False Positive Rate False Negative Rate	1.10% 1.72%			

Table 1: Graph Antiderivative-based vectorization

Table 2: Text-only vectorization

Class	Precision	Recall	F1-score	Support
Benign Malware	90.61% 87.80%	87.04% 91.18%	88.79% 89.46%	696827 424420
avg/total	89.19%	89.13%	89.13%	1121247
False Positive Rate False Negative Rate	8.79% 12.96%			

Questions?