
Applications of Graph Integration to Function

Comparison and Malware Classification

Michael Slawinski, Staff Data Scientist

Andy Wortman, Research Engineer Associate Principal

Oct 25, 2019

Cylance Inc.

Agenda

1. Overview of our Vectorization Method

2. The .NET Framework and Common Language Runtime (CLR)

3. Decompilation

4. Graph Integration

5. Results

1

Overview of our Vectorization

Method

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on

.NET files

Our Vectorization Method - an overview

1. Decompile(file) −→ {G}
2. Define a set of functions {f : Vert(G) −→ R} applicable to every

possible G

3. Compute antiderivatives of functions defined in previous step

4. Compute component-wise mean/std of antiderivatives across all G

resulting from decompilation of the given file

2

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on

.NET files

Our Vectorization Method - an overview

1. Decompile(file) −→ {G}
2. Define a set of functions {f : Vert(G) −→ R} applicable to every

possible G

3. Compute antiderivatives of functions defined in previous step

4. Compute component-wise mean/std of antiderivatives across all G

resulting from decompilation of the given file

2

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on

.NET files

Our Vectorization Method - an overview

1. Decompile(file) −→ {G}
2. Define a set of functions {f : Vert(G) −→ R} applicable to every

possible G

3. Compute antiderivatives of functions defined in previous step

4. Compute component-wise mean/std of antiderivatives across all G

resulting from decompilation of the given file

2

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on

.NET files

Our Vectorization Method - an overview

1. Decompile(file) −→ {G}

2. Define a set of functions {f : Vert(G) −→ R} applicable to every

possible G

3. Compute antiderivatives of functions defined in previous step

4. Compute component-wise mean/std of antiderivatives across all G

resulting from decompilation of the given file

2

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on

.NET files

Our Vectorization Method - an overview

1. Decompile(file) −→ {G}
2. Define a set of functions {f : Vert(G) −→ R} applicable to every

possible G

3. Compute antiderivatives of functions defined in previous step

4. Compute component-wise mean/std of antiderivatives across all G

resulting from decompilation of the given file

2

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on

.NET files

Our Vectorization Method - an overview

1. Decompile(file) −→ {G}
2. Define a set of functions {f : Vert(G) −→ R} applicable to every

possible G

3. Compute antiderivatives of functions defined in previous step

4. Compute component-wise mean/std of antiderivatives across all G

resulting from decompilation of the given file

2

Summary

Overall Goal

Construct a vectorization method to be leveraged by a classifier on

.NET files

Our Vectorization Method - an overview

1. Decompile(file) −→ {G}
2. Define a set of functions {f : Vert(G) −→ R} applicable to every

possible G

3. Compute antiderivatives of functions defined in previous step

4. Compute component-wise mean/std of antiderivatives across all G

resulting from decompilation of the given file

2

The .NET Framework and

Common Language Runtime

(CLR)

.NET Framework - two main components

Framework Class Library (FCL)

• user interface

• data access

• database connectivity

• cryptography

• web application development

Common Language Runtime (CLR)

• is an application virtual machine which provides

• security, memory management, exception handling

• compilation of high-level .NET code results in an Intermediate

Language Binary

• the CLR JITs the code from IL to machine code run on the cpu

3

.NET Framework - two main components

Framework Class Library (FCL)

• user interface

• data access

• database connectivity

• cryptography

• web application development

Common Language Runtime (CLR)

• is an application virtual machine which provides

• security, memory management, exception handling

• compilation of high-level .NET code results in an Intermediate

Language Binary

• the CLR JITs the code from IL to machine code run on the cpu

3

.NET Framework - two main components

Framework Class Library (FCL)

• user interface

• data access

• database connectivity

• cryptography

• web application development

Common Language Runtime (CLR)

• is an application virtual machine which provides

• security, memory management, exception handling

• compilation of high-level .NET code results in an Intermediate

Language Binary

• the CLR JITs the code from IL to machine code run on the cpu

3

.NET Framework - two main components

Framework Class Library (FCL)

• user interface

• data access

• database connectivity

• cryptography

• web application development

Common Language Runtime (CLR)

• is an application virtual machine which provides

• security, memory management, exception handling

• compilation of high-level .NET code results in an Intermediate

Language Binary

• the CLR JITs the code from IL to machine code run on the cpu

3

.NET Framework - two main components

Framework Class Library (FCL)

• user interface

• data access

• database connectivity

• cryptography

• web application development

Common Language Runtime (CLR)

• is an application virtual machine which provides

• security, memory management, exception handling

• compilation of high-level .NET code results in an Intermediate

Language Binary

• the CLR JITs the code from IL to machine code run on the cpu

3

.NET Framework - two main components

Framework Class Library (FCL)

• user interface

• data access

• database connectivity

• cryptography

• web application development

Common Language Runtime (CLR)

• is an application virtual machine which provides

• security, memory management, exception handling

• compilation of high-level .NET code results in an Intermediate

Language Binary

• the CLR JITs the code from IL to machine code run on the cpu

3

.NET Framework - two main components

Framework Class Library (FCL)

• user interface

• data access

• database connectivity

• cryptography

• web application development

Common Language Runtime (CLR)

• is an application virtual machine which provides

• security, memory management, exception handling

• compilation of high-level .NET code results in an Intermediate

Language Binary

• the CLR JITs the code from IL to machine code run on the cpu

3

Decompilation

Decompilation

Definition

Decompilation is a program transformation by which compiled code is

transformed into a high-level human-readable form.

Definition

An Abstract Syntax Tree is a tree representation of the abstract

syntactic structure of the source code, where each node denotes a

construct occurring in the source code.

Program control flow is understood by studying the structure of two

types of control flow graphs resulting from decompilation.

• the function call graph describes the calling structure of the

functions (subroutines) constituting the overall program

• Shortsighted Data Flow Graphs (SDFG) - each obtained by merging

all paths through the AST corresponding to a constituent function

4

Decompilation

Definition

Decompilation is a program transformation by which compiled code is

transformed into a high-level human-readable form.

Definition

An Abstract Syntax Tree is a tree representation of the abstract

syntactic structure of the source code, where each node denotes a

construct occurring in the source code.

Program control flow is understood by studying the structure of two

types of control flow graphs resulting from decompilation.

• the function call graph describes the calling structure of the

functions (subroutines) constituting the overall program

• Shortsighted Data Flow Graphs (SDFG) - each obtained by merging

all paths through the AST corresponding to a constituent function

4

Decompilation

Definition

Decompilation is a program transformation by which compiled code is

transformed into a high-level human-readable form.

Definition

An Abstract Syntax Tree is a tree representation of the abstract

syntactic structure of the source code, where each node denotes a

construct occurring in the source code.

Program control flow is understood by studying the structure of two

types of control flow graphs resulting from decompilation.

• the function call graph describes the calling structure of the

functions (subroutines) constituting the overall program

• Shortsighted Data Flow Graphs (SDFG) - each obtained by merging

all paths through the AST corresponding to a constituent function

4

Decompilation

Definition

Decompilation is a program transformation by which compiled code is

transformed into a high-level human-readable form.

Definition

An Abstract Syntax Tree is a tree representation of the abstract

syntactic structure of the source code, where each node denotes a

construct occurring in the source code.

Program control flow is understood by studying the structure of two

types of control flow graphs resulting from decompilation.

• the function call graph describes the calling structure of the

functions (subroutines) constituting the overall program

• Shortsighted Data Flow Graphs (SDFG) - each obtained by merging

all paths through the AST corresponding to a constituent function

4

Decompilation

Definition

Decompilation is a program transformation by which compiled code is

transformed into a high-level human-readable form.

Definition

An Abstract Syntax Tree is a tree representation of the abstract

syntactic structure of the source code, where each node denotes a

construct occurring in the source code.

Program control flow is understood by studying the structure of two

types of control flow graphs resulting from decompilation.

• the function call graph describes the calling structure of the

functions (subroutines) constituting the overall program

• Shortsighted Data Flow Graphs (SDFG) - each obtained by merging

all paths through the AST corresponding to a constituent function

4

Decompilation

Definition

Decompilation is a program transformation by which compiled code is

transformed into a high-level human-readable form.

Definition

An Abstract Syntax Tree is a tree representation of the abstract

syntactic structure of the source code, where each node denotes a

construct occurring in the source code.

Program control flow is understood by studying the structure of two

types of control flow graphs resulting from decompilation.

• the function call graph describes the calling structure of the

functions (subroutines) constituting the overall program

• Shortsighted Data Flow Graphs (SDFG) - each obtained by merging

all paths through the AST corresponding to a constituent function

4

Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5

Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5

Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5

Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5

Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5

Abstract Syntax Trees

Example: Arithmetic Expressions

Consider the following BinaryOp expression:

5 ∗ 3 + (4 + 2 % 2 ∗ 8)

The semantic structure of this expression can be distilled by considering

the following binary tree:

Distilled semantic structure = order of operations

5

CLR AST Dictionary - CLR-Specific or C#-specific AST Members in Blue

Control Flow

• if - reference the conditional and execute accordingly

• break - immediately exit the enclosing loop

• CLRWhile - infinite loop

Expressions

Code that when evaluated does yield a value. Valid in places such as tests, for

loops, conditionals, or as the right-hand side of assignments.

• BinaryOp - expression computed from two operands and some operator

• Call - function call, including list of args pass to the function

Statements

Code that when evaluated does not yield a value. E.g., a statement cannot be on

the right-hand side of an assignment.

• Assignment - storage of rh variable to the location yielded by lh variable

• CLRVariableWithInitializer - declaration and subsequent initialization

CLR-Specific or C#-specific AST Members

6

CLR AST Dictionary - CLR-Specific or C#-specific AST Members in Blue

Control Flow

• if - reference the conditional and execute accordingly

• break - immediately exit the enclosing loop

• CLRWhile - infinite loop

Expressions

Code that when evaluated does yield a value. Valid in places such as tests, for

loops, conditionals, or as the right-hand side of assignments.

• BinaryOp - expression computed from two operands and some operator

• Call - function call, including list of args pass to the function

Statements

Code that when evaluated does not yield a value. E.g., a statement cannot be on

the right-hand side of an assignment.

• Assignment - storage of rh variable to the location yielded by lh variable

• CLRVariableWithInitializer - declaration and subsequent initialization

CLR-Specific or C#-specific AST Members

6

CLR AST Dictionary - CLR-Specific or C#-specific AST Members in Blue

Control Flow

• if - reference the conditional and execute accordingly

• break - immediately exit the enclosing loop

• CLRWhile - infinite loop

Expressions

Code that when evaluated does yield a value. Valid in places such as tests, for

loops, conditionals, or as the right-hand side of assignments.

• BinaryOp - expression computed from two operands and some operator

• Call - function call, including list of args pass to the function

Statements

Code that when evaluated does not yield a value. E.g., a statement cannot be on

the right-hand side of an assignment.

• Assignment - storage of rh variable to the location yielded by lh variable

• CLRVariableWithInitializer - declaration and subsequent initialization

CLR-Specific or C#-specific AST Members

6

CLR AST Dictionary - CLR-Specific or C#-specific AST Members in Blue

Control Flow

• if - reference the conditional and execute accordingly

• break - immediately exit the enclosing loop

• CLRWhile - infinite loop

Expressions

Code that when evaluated does yield a value. Valid in places such as tests, for

loops, conditionals, or as the right-hand side of assignments.

• BinaryOp - expression computed from two operands and some operator

• Call - function call, including list of args pass to the function

Statements

Code that when evaluated does not yield a value. E.g., a statement cannot be on

the right-hand side of an assignment.

• Assignment - storage of rh variable to the location yielded by lh variable

• CLRVariableWithInitializer - declaration and subsequent initialization

CLR-Specific or C#-specific AST Members 6

Construction of Shortsighted Data Flow Graph

Small code block resulting in a nonlinear SDFG.

if foo() {
bar();

}
else {

baz();

}
bla();

foo

bar baz

bla

ev to true ev to false

7

Construction of Shortsighted Data Flow Graph

Small code block resulting in a nonlinear SDFG.

if foo() {
bar();

}
else {

baz();

}
bla();

foo

bar baz

bla

ev to true ev to false

7

Construction of Shortsighted Data Flow Graph

Small code block resulting in a nonlinear SDFG.

if foo() {
bar();

}
else {

baz();

}
bla();

foo

bar baz

bla

ev to true ev to false

7

Construction of Shortsighted Data Flow Graph

Small code block resulting in a nonlinear SDFG.

if foo() {
bar();

}
else {

baz();

}
bla();

foo

bar baz

bla

ev to true ev to false

7

Functions on SDFG Graphs - Motivation

We often study an object X by studying a set of functions defined on X

X ∗ := {f : X −→ R}

Example 1

Consider the case of a distribution D on a sample space Ω defined by

the measure µ. We might choose to study D by studying

fn : D 7→
∫

Ω

xndµ(x)

Example 2

Consider the set of invertible n × n matrices GLn(F) on some field F.

We might choose to study GLn(F) by studying

tr, det : GLn(F) −→ R

8

Functions on SDFG Graphs - Motivation

We often study an object X by studying a set of functions defined on X

X ∗ := {f : X −→ R}

Example 1

Consider the case of a distribution D on a sample space Ω defined by

the measure µ. We might choose to study D by studying

fn : D 7→
∫

Ω

xndµ(x)

Example 2

Consider the set of invertible n × n matrices GLn(F) on some field F.

We might choose to study GLn(F) by studying

tr, det : GLn(F) −→ R

8

Functions on SDFG Graphs - Motivation

We often study an object X by studying a set of functions defined on X

X ∗ := {f : X −→ R}

Example 1

Consider the case of a distribution D on a sample space Ω defined by

the measure µ. We might choose to study D by studying

fn : D 7→
∫

Ω

xndµ(x)

Example 2

Consider the set of invertible n × n matrices GLn(F) on some field F.

We might choose to study GLn(F) by studying

tr, det : GLn(F) −→ R

8

Functions on SDFG Graphs - Motivation

We often study an object X by studying a set of functions defined on X

X ∗ := {f : X −→ R}

Example 1

Consider the case of a distribution D on a sample space Ω defined by

the measure µ. We might choose to study D by studying

fn : D 7→
∫

Ω

xndµ(x)

Example 2

Consider the set of invertible n × n matrices GLn(F) on some field F.

We might choose to study GLn(F) by studying

tr, det : GLn(F) −→ R

8

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev)

2. CLRClassRef : v 7→ η(ReferencedClassv)

for some string-to-float hash function η.

9

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev)

2. CLRClassRef : v 7→ η(ReferencedClassv)

for some string-to-float hash function η.

9

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev)

2. CLRClassRef : v 7→ η(ReferencedClassv)

for some string-to-float hash function η.

9

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev)

2. CLRClassRef : v 7→ η(ReferencedClassv)

for some string-to-float hash function η.

9

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev)

2. CLRClassRef : v 7→ η(ReferencedClassv)

for some string-to-float hash function η.

9

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev)

2. CLRClassRef : v 7→ η(ReferencedClassv)

for some string-to-float hash function η.

9

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev)

2. CLRClassRef : v 7→ η(ReferencedClassv)

for some string-to-float hash function η.

9

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev)

2. CLRClassRef : v 7→ η(ReferencedClassv)

for some string-to-float hash function η.

9

Functions on SDFG Graphs

Let G be a SDFG graph resulting from traversing a given AST

corresponding to some source code function.

Example

Define

NumPass2Call : Vert(G) −→ R

by
v 7→ #argsv

where #argsv is the number of arguments passed to the function called

at v .

Other Examples:

1. BinaryOp : v 7→ η(whichOpCodev)

2. CLRClassRef : v 7→ η(ReferencedClassv)

for some string-to-float hash function η.

9

Graph Antiderivative - Ingredients

In order to define an integral of a function

f : Vert(G) −→ R

for G a directed graph, we must define a measure µ on Vert(G) in such a

way that f is measurable.

We do this by imposing a Markov chain structure on G and taking µ to

be the PageRank measure

P : Vert(G) −→ [0, 1]

v 7→ PageRank(G)v

where the PageRank vector is taken to be the steady-state probability

distribution over the nodes resulting from the long-run behavior of the

random-walk Markov Chain.

10

Graph Antiderivative - Ingredients

In order to define an integral of a function

f : Vert(G) −→ R

for G a directed graph, we must define a measure µ on Vert(G) in such a

way that f is measurable.

We do this by imposing a Markov chain structure on G and taking µ to

be the PageRank measure

P : Vert(G) −→ [0, 1]

v 7→ PageRank(G)v

where the PageRank vector is taken to be the steady-state probability

distribution over the nodes resulting from the long-run behavior of the

random-walk Markov Chain.

10

Graph Antiderivative - Ingredients

In order to define an integral of a function

f : Vert(G) −→ R

for G a directed graph, we must define a measure µ on Vert(G) in such a

way that f is measurable.

We do this by imposing a Markov chain structure on G and taking µ to

be the PageRank measure

P : Vert(G) −→ [0, 1]

v 7→ PageRank(G)v

where the PageRank vector is taken to be the steady-state probability

distribution over the nodes resulting from the long-run behavior of the

random-walk Markov Chain.

10

Graph Antiderivative - Ingredients

In order to define an integral of a function

f : Vert(G) −→ R

for G a directed graph, we must define a measure µ on Vert(G) in such a

way that f is measurable.

We do this by imposing a Markov chain structure on G and taking µ to

be the PageRank measure

P : Vert(G) −→ [0, 1]

v 7→ PageRank(G)v

where the PageRank vector is taken to be the steady-state probability

distribution over the nodes resulting from the long-run behavior of the

random-walk Markov Chain.

10

Graph Integration

Markov Chains and the PageRank Vector

Definition

A discrete-time Markov chain is a sequence of random variables X1,X2, . . .

such that

P(Xn+1 = x |X1 = x1, . . . ,Xn = xn) = P(Xn+1 = x |Xn = xn)

Given G , order the vertices {vi} of the graph G and define the n × n probability

transition matrix T by

tij =

{
1/|vout

i | if (vi , vj) ∈ Edges(G)

0 otherwise

where vout
i is the set of edges emanating from vertex vi and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth T to

M = (1− p)T + pB (Perron-Frobenius)

where

B =
1

n


1 1 . . .

...
. . .

1 1



11

Markov Chains and the PageRank Vector

Definition

A discrete-time Markov chain is a sequence of random variables X1,X2, . . .

such that

P(Xn+1 = x |X1 = x1, . . . ,Xn = xn) = P(Xn+1 = x |Xn = xn)

Given G , order the vertices {vi} of the graph G and define the n × n probability

transition matrix T by

tij =

{
1/|vout

i | if (vi , vj) ∈ Edges(G)

0 otherwise

where vout
i is the set of edges emanating from vertex vi and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth T to

M = (1− p)T + pB (Perron-Frobenius)

where

B =
1

n


1 1 . . .

...
. . .

1 1



11

Markov Chains and the PageRank Vector

Definition

A discrete-time Markov chain is a sequence of random variables X1,X2, . . .

such that

P(Xn+1 = x |X1 = x1, . . . ,Xn = xn) = P(Xn+1 = x |Xn = xn)

Given G , order the vertices {vi} of the graph G and define the n × n probability

transition matrix T by

tij =

{
1/|vout

i | if (vi , vj) ∈ Edges(G)

0 otherwise

where vout
i is the set of edges emanating from vertex vi and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth T to

M = (1− p)T + pB (Perron-Frobenius)

where

B =
1

n


1 1 . . .

...
. . .

1 1



11

Markov Chains and the PageRank Vector

Definition

A discrete-time Markov chain is a sequence of random variables X1,X2, . . .

such that

P(Xn+1 = x |X1 = x1, . . . ,Xn = xn) = P(Xn+1 = x |Xn = xn)

Given G , order the vertices {vi} of the graph G and define the n × n probability

transition matrix T by

tij =

{
1/|vout

i | if (vi , vj) ∈ Edges(G)

0 otherwise

where vout
i is the set of edges emanating from vertex vi and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth T to

M = (1− p)T + pB (Perron-Frobenius)

where

B =
1

n


1 1 . . .

...
. . .

1 1



11

Markov Chains and the PageRank Vector

Definition

A discrete-time Markov chain is a sequence of random variables X1,X2, . . .

such that

P(Xn+1 = x |X1 = x1, . . . ,Xn = xn) = P(Xn+1 = x |Xn = xn)

Given G , order the vertices {vi} of the graph G and define the n × n probability

transition matrix T by

tij =

{
1/|vout

i | if (vi , vj) ∈ Edges(G)

0 otherwise

where vout
i is the set of edges emanating from vertex vi and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth T to

M = (1− p)T + pB (Perron-Frobenius)

where

B =
1

n


1 1 . . .

...
. . .

1 1



11

Markov Chains and the PageRank Vector

Definition

A discrete-time Markov chain is a sequence of random variables X1,X2, . . .

such that

P(Xn+1 = x |X1 = x1, . . . ,Xn = xn) = P(Xn+1 = x |Xn = xn)

Given G , order the vertices {vi} of the graph G and define the n × n probability

transition matrix T by

tij =

{
1/|vout

i | if (vi , vj) ∈ Edges(G)

0 otherwise

where vout
i is the set of edges emanating from vertex vi and n = |Vert(G)|.

To ensure the irreducibility of our transition matrix, we smooth T to

M = (1− p)T + pB (Perron-Frobenius)

where

B =
1

n


1 1 . . .

...
. . .

1 1


11

PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G)|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12

PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G)|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12

PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G)|

1
...

1



and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12

PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G)|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12

PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G)|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12

PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G)|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12

PageRank Measure

The PageRank vector P is given by the left eigenvector of M and

corresponds to

lim
n→∞

Mn 1

|Vert(G)|

1
...

1


and can usually be adequately approximated with n = 10.

The corresponding Markov chain is defined by

P(Xt = vi |Xt−1 = vj) = (1− p)tij + p
1

n

12

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])

13

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])

13

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])

13

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])

13

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])

13

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])

13

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])

13

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])

13

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])

13

Construction of the Graph Integral

Consider a function f : Vert(G) −→ R for G a finite directed graph.

Let P = {pv} be the PageRank measure on Vert(G). We can then define a

measure νf on Vert(G) by

νf (S) =

∫
S

f dP

=
∑

αj∈image(f)

αjP(f −1(αj) ∩ S)

=
∑
v∈S

f (v)pv

Let P be a partition of [0, 1] and let Gq = {v |pv ≤ q}.

The filtration

Gq1 ⊆ Gq2 ⊆ · · · ⊆ Gq|P| = Vert(G)

allows us to define our graph antiderivative Ff ,G of f by

Ff ,G := (νf (Gq1), νf (Gq2), . . . , νf (Gq|P|))

= (E[f |Gq1
],E[f |Gq2

], . . . ,E[f |G|P|])
13

The Graph Antiderivative Visualized

v1 v2

v3 v4

v5

v6

v7

f R

P Ff ,G R

Antiderivative

Γ× Fun(
⊔
Γ

Vert(G),R) −→ Fun(P,R)

(G , f) 7→ (Ff ,G : q 7→ E[f |Gq]),

14

The Graph Antiderivative Visualized

v1 v2

v3 v4

v5

v6

v7

f R

P Ff ,G R

Antiderivative

Γ× Fun(
⊔
Γ

Vert(G),R) −→ Fun(P,R)

(G , f) 7→ (Ff ,G : q 7→ E[f |Gq]),

14

The Graph Antiderivative Visualized

v1 v2

v3 v4

v5

v6

v7

f R

P Ff ,G R

Antiderivative

Γ× Fun(
⊔
Γ

Vert(G),R) −→ Fun(P,R)

(G , f) 7→ (Ff ,G : q 7→ E[f |Gq]),

14

The Graph Antiderivative Visualized

v1 v2

v3 v4

v5

v6

v7

f R

P Ff ,G R

Antiderivative

Γ× Fun(
⊔
Γ

Vert(G),R) −→ Fun(P,R)

(G , f) 7→ (Ff ,G : q 7→ E[f |Gq]),

14

The Graph Antiderivative Visualized

v1 v2

v3 v4

v5

v6

v7

f R

P Ff ,G R

Antiderivative

Γ× Fun(
⊔
Γ

Vert(G),R) −→ Fun(P,R)

(G , f) 7→ (Ff ,G : q 7→ E[f |Gq]),

14

The Graph Antiderivative Visualized

v1 v2

v3 v4

v5

v6

v7

f R

P Ff ,G R

Antiderivative

Γ× Fun(
⊔
Γ

Vert(G),R) −→ Fun(P,R)

(G , f) 7→ (Ff ,G : q 7→ E[f |Gq]),

14

Graph Integration: Example

Consider a SDFG G given by:

Edge(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

PageRank(G) = 〈pv1 = 0.10, pv2 = 0.15, pv3 = 0.25, pv4 = 0.50〉

Assume the nodes v1, v4 ∈ Vert(G) both correspond to function calls

φvi (argsvi), where argsvi represent the set of arguments passed to φvi . Define

NumPass2Call : Vert(G) −→ R

by

vi 7→

#argsvi if i ∈ {1, 4}
0 otherwise

Let P = (0.05, 0.12, 0.95).

Then FNumPass2Call,G : P −→ R takes the form0.05

0.12

0.95

 7→
 0

0.1 ∗#argsv1

0.1 ∗#argsv1
+ 0.5 ∗#argsv4



15

Graph Integration: Example

Consider a SDFG G given by:

Edge(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

PageRank(G) = 〈pv1 = 0.10, pv2 = 0.15, pv3 = 0.25, pv4 = 0.50〉

Assume the nodes v1, v4 ∈ Vert(G) both correspond to function calls

φvi (argsvi), where argsvi represent the set of arguments passed to φvi . Define

NumPass2Call : Vert(G) −→ R

by

vi 7→

#argsvi if i ∈ {1, 4}
0 otherwise

Let P = (0.05, 0.12, 0.95).

Then FNumPass2Call,G : P −→ R takes the form0.05

0.12

0.95

 7→
 0

0.1 ∗#argsv1

0.1 ∗#argsv1
+ 0.5 ∗#argsv4



15

Graph Integration: Example

Consider a SDFG G given by:

Edge(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

PageRank(G) = 〈pv1 = 0.10, pv2 = 0.15, pv3 = 0.25, pv4 = 0.50〉

Assume the nodes v1, v4 ∈ Vert(G) both correspond to function calls

φvi (argsvi), where argsvi represent the set of arguments passed to φvi .

Define

NumPass2Call : Vert(G) −→ R

by

vi 7→

#argsvi if i ∈ {1, 4}
0 otherwise

Let P = (0.05, 0.12, 0.95).

Then FNumPass2Call,G : P −→ R takes the form0.05

0.12

0.95

 7→
 0

0.1 ∗#argsv1

0.1 ∗#argsv1
+ 0.5 ∗#argsv4



15

Graph Integration: Example

Consider a SDFG G given by:

Edge(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

PageRank(G) = 〈pv1 = 0.10, pv2 = 0.15, pv3 = 0.25, pv4 = 0.50〉

Assume the nodes v1, v4 ∈ Vert(G) both correspond to function calls

φvi (argsvi), where argsvi represent the set of arguments passed to φvi . Define

NumPass2Call : Vert(G) −→ R

by

vi 7→

#argsvi if i ∈ {1, 4}
0 otherwise

Let P = (0.05, 0.12, 0.95).

Then FNumPass2Call,G : P −→ R takes the form0.05

0.12

0.95

 7→
 0

0.1 ∗#argsv1

0.1 ∗#argsv1
+ 0.5 ∗#argsv4



15

Graph Integration: Example

Consider a SDFG G given by:

Edge(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

PageRank(G) = 〈pv1 = 0.10, pv2 = 0.15, pv3 = 0.25, pv4 = 0.50〉

Assume the nodes v1, v4 ∈ Vert(G) both correspond to function calls

φvi (argsvi), where argsvi represent the set of arguments passed to φvi . Define

NumPass2Call : Vert(G) −→ R

by

vi 7→

#argsvi if i ∈ {1, 4}
0 otherwise

Let P = (0.05, 0.12, 0.95).

Then FNumPass2Call,G : P −→ R takes the form0.05

0.12

0.95

 7→
 0

0.1 ∗#argsv1

0.1 ∗#argsv1
+ 0.5 ∗#argsv4



15

Graph Integration: Example

Consider a SDFG G given by:

Edge(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

PageRank(G) = 〈pv1 = 0.10, pv2 = 0.15, pv3 = 0.25, pv4 = 0.50〉

Assume the nodes v1, v4 ∈ Vert(G) both correspond to function calls

φvi (argsvi), where argsvi represent the set of arguments passed to φvi . Define

NumPass2Call : Vert(G) −→ R

by

vi 7→

#argsvi if i ∈ {1, 4}
0 otherwise

Let P = (0.05, 0.12, 0.95).

Then FNumPass2Call,G : P −→ R takes the form0.05

0.12

0.95

 7→
 0

0.1 ∗#argsv1

0.1 ∗#argsv1
+ 0.5 ∗#argsv4



15

Graph Integration: Example

Consider a SDFG G given by:

Edge(G) = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

PageRank(G) = 〈pv1 = 0.10, pv2 = 0.15, pv3 = 0.25, pv4 = 0.50〉

Assume the nodes v1, v4 ∈ Vert(G) both correspond to function calls

φvi (argsvi), where argsvi represent the set of arguments passed to φvi . Define

NumPass2Call : Vert(G) −→ R

by

vi 7→

#argsvi if i ∈ {1, 4}
0 otherwise

Let P = (0.05, 0.12, 0.95).

Then FNumPass2Call,G : P −→ R takes the form0.05

0.12

0.95

 7→
 0

0.1 ∗#argsv1

0.1 ∗#argsv1
+ 0.5 ∗#argsv4


15

Results

Vectorization Efficacy

∫ 0.6
0 ClassRefname : v 7→ η(name(v))dP

Name of referenced class at v

∫ 0.95
0 ArgRefType : v 7→ η(type(v))dP

Type of argument referenced at v

∫ 0.4
0 CLRLiteral : v 7→ η(type(v))dP

Type of literal occurring at v

Top Features by AUC

Value/type of literal expression at v

16

Vectorization Efficacy

∫ 0.6
0 ClassRefname : v 7→ η(name(v))dP

Name of referenced class at v

∫ 0.95
0 ArgRefType : v 7→ η(type(v))dP

Type of argument referenced at v

∫ 0.4
0 CLRLiteral : v 7→ η(type(v))dP

Type of literal occurring at v

Top Features by AUC

Value/type of literal expression at v

16

Vectorization Efficacy

∫ 0.6
0 ClassRefname : v 7→ η(name(v))dP

Name of referenced class at v

∫ 0.95
0 ArgRefType : v 7→ η(type(v))dP

Type of argument referenced at v

∫ 0.4
0 CLRLiteral : v 7→ η(type(v))dP

Type of literal occurring at v

Top Features by AUC

Value/type of literal expression at v

16

Vectorization Efficacy

∫ 0.6
0 ClassRefname : v 7→ η(name(v))dP

Name of referenced class at v

∫ 0.95
0 ArgRefType : v 7→ η(type(v))dP

Type of argument referenced at v

∫ 0.4
0 CLRLiteral : v 7→ η(type(v))dP

Type of literal occurring at v

Top Features by AUC

Value/type of literal expression at v 16

Model Results - Random Forest

Table 1: Graph Antiderivative-based vectorization

Class Precision Recall F1-score Support

Benign 97.88% 99.37% 98.62% 696827

Malware 98.94% 96.47% 97.69% 424420

avg/total 98.28% 98.27% 98.27% 1121247

False Positive Rate 1.10%

False Negative Rate 1.72%

Table 2: Text-only vectorization

Class Precision Recall F1-score Support

Benign 90.61% 87.04% 88.79% 696827

Malware 87.80% 91.18% 89.46% 424420

avg/total 89.19% 89.13% 89.13% 1121247

False Positive Rate 8.79%

False Negative Rate 12.96%

17

Model Results - Random Forest

Table 1: Graph Antiderivative-based vectorization

Class Precision Recall F1-score Support

Benign 97.88% 99.37% 98.62% 696827

Malware 98.94% 96.47% 97.69% 424420

avg/total 98.28% 98.27% 98.27% 1121247

False Positive Rate 1.10%

False Negative Rate 1.72%

Table 2: Text-only vectorization

Class Precision Recall F1-score Support

Benign 90.61% 87.04% 88.79% 696827

Malware 87.80% 91.18% 89.46% 424420

avg/total 89.19% 89.13% 89.13% 1121247

False Positive Rate 8.79%

False Negative Rate 12.96%

17

Model Results - Random Forest

Table 1: Graph Antiderivative-based vectorization

Class Precision Recall F1-score Support

Benign 97.88% 99.37% 98.62% 696827

Malware 98.94% 96.47% 97.69% 424420

avg/total 98.28% 98.27% 98.27% 1121247

False Positive Rate 1.10%

False Negative Rate 1.72%

Table 2: Text-only vectorization

Class Precision Recall F1-score Support

Benign 90.61% 87.04% 88.79% 696827

Malware 87.80% 91.18% 89.46% 424420

avg/total 89.19% 89.13% 89.13% 1121247

False Positive Rate 8.79%

False Negative Rate 12.96%

17

Questions?

17

	Overview of our Vectorization Method
	The .NET Framework and Common Language Runtime (CLR)
	Decompilation
	Graph Integration
	Results

