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What is a String?
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§Persists in compilation
§ASCII/Narrow
– N characters + NULL
– No file format, context 
– 0x31 0x33 0x33 0x37 0x00

– ‘1337’, right?

– Not necessarily:
– Memory addresses
– CPU instructions
– Data used by the program

§ Unicode/Wide
– 2 bytes, double-NULL terminated
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printf("1337");
return 0;
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The Strings Program
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!This program cannot be run in DOS mode.
??3@YAXPAX@Z
??2@YAPAXI@Z
__CxxFrameHandler
_except_handler3
WSAStartup() error: %d
User-Agent: Mozilla/4.0 (compatible; MSIE 6.00; Windows 
NT 5.1)
GetLastInputInfo
SeShutdownPrivilege
%s\IEXPLORE.EXE
SOFTWARE\Microsoft\Windows\CurrentVersion\App 
Paths\IEXPLORE.EXE
[Machine IdleTime:] %d days + %.2d:%.2d:%.2d
[Machine UpTime:] %-.2d Days %-.2d Hours %-.2d Minutes 
%-.2d Seconds
ServiceDll
SYSTEM\CurrentControlSet\Services\%s\Parameters\
if exist "%s" goto selfkill
del "%s"
attrib -a -r -s -h "%s"
Inject '%s' to  PID '%d' Successfully!
\cmd.exe /c 
Hi,Master [%d/%d/%d %d:%d:%d]
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Malware Triage

4

Customer

Suspected 
compromise

Incident Response

Forensic analysis
Identify 
malware 
sample

Reverse Engineer

Binary triage
Malware 
analysis

+SOC analysts, red teamers, malware researchers, n00bs, experts



©2019 FireEye©2019 FireEye

Strings in Practice – Static Analysis
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§Running Strings on larger binaries produces tens of 
thousands of strings. 

§Strings produces a ton of noise mixed in with 
important information

§Knowing which strings are relevant often requires 
highly experienced analysts.

§Relevance is subjective and its definition can vary 
significantly across analysts. 
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Hypothesis and Goals
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§ Develop a tool that can:
– efficiently identify and prioritize strings
– based on relevance for malware analysis

§StringSifter should:
– be easy to use
– generalize across:

– roles, use cases, downstream apps

– save time and money

§ How does it work?



©2019 FireEye©2019 FireEye

( )
§ Create optimal ordering of a list of items

§ Precise individual item scores less 
important than their relative ordering

§ In classification, regression, clustering we 
predict a class or single score

§ LTR rarely applied in security applications

Learning to Rank

7

f
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§ Rank items within unseen lists in a similar way to rankings within training lists

§ Each item associated with a set of features and an ordinal integer label

§Ordinal label is the teaching signal that encodes relevance level

LTR as Supervised Learning

8
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EMBER Dataset
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§ Endgame Malware BEnchmark for Research
– v1 (1.1 million PE files scanned on or before 2017)
§ https://arxiv.org/abs/1804.04637
§ https://github.com/endgameinc/ember

– 400k train + test malware binaries from v1
§ malware defined as > 40 VT vendors say malicious

§ Ran Strings on 400k malware binaries
– produced 3+ billion ASCII + Unicode strings (24+ GB)
– performed sampling, stratified by malware family
– labeled according to weak supervision

https://arxiv.org/abs/1804.04637
https://github.com/endgameinc/ember
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Weak Supervision
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https://github.com/snorkel-team/snorkel

§ Data Labeling Bottleneck
§ Ordinal Labeling Functions
– ABSTAIN         = -1
– VERY_IRRELEVANT = 0
– IRRELEVANT      = 1
– SEMI_IRRELEVANT = 2
– NEUTRAL         = 3
– SEMI_RELEVANT   = 4
– RELEVANT        = 5
– VERY_RELEVANT   = 6

§ cardinality = 7, tie goes NEUTRAL
§ Apply 70+ LFs over input strings, 

generate probabilistic labels

https://github.com/snorkel-team/snorkel
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§ Natural Language Processing
– Entropy rate
– KL Divergence
– Markov model

§ Host, Network IoCs

§ Malware Regexes
– encodings (base64)
– format specifiers
– user agents

LF Examples
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[(‘QQQQ’,      0),
(’QQQQ’,      0),
(’PPPPP’,        0),
(’PPPPP’,        0),
(’WWWWW’, 0),
(‘SSSSS’,         0),
(’SSSSS’,         0),
…
(’VVVVV’,     0)]
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LFApplier
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Learning a LabelModel
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https://github.com/snorkel-team/snorkel

§ LFS have different:
– Accuracies
– Correlations
– Certainties

§ Learning a LabelModel
– Inverse generalized

covariance matrix of LFs
– Matrix completion (Robust PCA)

§ Snorkel @ ICML ’19
– https://arxiv.org/abs/1903.05844

https://github.com/snorkel-team/snorkel
https://arxiv.org/abs/1903.05844
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§ Gradient Boosted Decision Trees (GBDTs)
– combine outputs from multiple Decision Trees
– reduce loss using gradient descent
– weighted sum of trees’ predictions as ensemble
– LightGBM (https://github.com/microsoft/LightGBM)
§ Histogram-binned GBDTs with LTR obj. function

§ Neural networks
– tf-ranking (https://github.com/tensorflow/ranking)
– Scoring Function: defines the network
– Loss (e.g. pairwise logistic), Metrics (e.g. precision)

LTR Models

14

https://github.com/microsoft/LightGBM
https://github.com/tensorflow/ranking
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§ Normalized Discounted Cumulative Gain 

– Normalized: divide DCG by ideal DCG on 
a ground truth holdout dataset 

– Discounted: divides each string’s predicted 
relevance by a monotonically increasing 
function (log of its ranked position)

– Cumulative: the cumulative gain or 
summed total of every string’s relevance

– Gain: the magnitude of each string’s 
relevance

Evaluation

15
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Kernel Density of Test NDCG Scores

16

StringSifter performs well on a holdout set of 7+ years of FLARE malware reports.
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Putting it All Together

17



©2019 FireEye©2019 FireEye

Demo
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Open Sourcing StringSifter
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§ The tool is now live
– Command line and Docker tools
– flarestrings <my_sample> | rank_strings

§ FLOSS outputs, live memory dumps

§ Weak Supervision for Cybersecurity
– Other label-starved problems?

§ In the works
– more labeling functions, mach-o + ELF files

https://github.com/fireeye/stringsifter
pip install stringsifter

@phtully

https://github.com/fireeye/stringsifter

