
©2019 FireEye

©2019 FireEye©2019 FireEye

What is a String?

2

§Persists in compilation
§ASCII/Narrow
– N characters + NULL
– No file format, context
– 0x31 0x33 0x33 0x37 0x00

– ‘1337’, right?

– Not necessarily:
– Memory addresses
– CPU instructions
– Data used by the program

§ Unicode/Wide
– 2 bytes, double-NULL terminated

So
ur

ce
 C

od
e int main() {

printf("1337");
return 0;
}

O
bj

ec
t F

ile

"1337"

.E
XE

 B
in

ar
y .data

0x56000:
"1337"

©2019 FireEye©2019 FireEye

The Strings Program

3

!This program cannot be run in DOS mode.
??3@YAXPAX@Z
??2@YAPAXI@Z
__CxxFrameHandler
_except_handler3
WSAStartup() error: %d
User-Agent: Mozilla/4.0 (compatible; MSIE 6.00; Windows
NT 5.1)
GetLastInputInfo
SeShutdownPrivilege
%s\IEXPLORE.EXE
SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\IEXPLORE.EXE
[Machine IdleTime:] %d days + %.2d:%.2d:%.2d
[Machine UpTime:] %-.2d Days %-.2d Hours %-.2d Minutes
%-.2d Seconds
ServiceDll
SYSTEM\CurrentControlSet\Services\%s\Parameters\
if exist "%s" goto selfkill
del "%s"
attrib -a -r -s -h "%s"
Inject '%s' to PID '%d' Successfully!
\cmd.exe /c
Hi,Master [%d/%d/%d %d:%d:%d]

©2019 FireEye©2019 FireEye

Malware Triage

4

Customer

Suspected
compromise

Incident Response

Forensic analysis
Identify
malware
sample

Reverse Engineer

Binary triage
Malware
analysis

+SOC analysts, red teamers, malware researchers, n00bs, experts

©2019 FireEye©2019 FireEye

Strings in Practice – Static Analysis

5

§Running Strings on larger binaries produces tens of
thousands of strings.

§Strings produces a ton of noise mixed in with
important information

§Knowing which strings are relevant often requires
highly experienced analysts.

§Relevance is subjective and its definition can vary
significantly across analysts.

©2019 FireEye©2019 FireEye

Hypothesis and Goals

6

§ Develop a tool that can:
– efficiently identify and prioritize strings
– based on relevance for malware analysis

§StringSifter should:
– be easy to use
– generalize across:

– roles, use cases, downstream apps

– save time and money

§ How does it work?

©2019 FireEye©2019 FireEye

()
§ Create optimal ordering of a list of items

§ Precise individual item scores less
important than their relative ordering

§ In classification, regression, clustering we
predict a class or single score

§ LTR rarely applied in security applications

Learning to Rank

7

f

©2019 FireEye©2019 FireEye

§ Rank items within unseen lists in a similar way to rankings within training lists

§ Each item associated with a set of features and an ordinal integer label

§Ordinal label is the teaching signal that encodes relevance level

LTR as Supervised Learning

8

©2019 FireEye©2019 FireEye

EMBER Dataset

9

§ Endgame Malware BEnchmark for Research
– v1 (1.1 million PE files scanned on or before 2017)
§ https://arxiv.org/abs/1804.04637
§ https://github.com/endgameinc/ember

– 400k train + test malware binaries from v1
§ malware defined as > 40 VT vendors say malicious

§ Ran Strings on 400k malware binaries
– produced 3+ billion ASCII + Unicode strings (24+ GB)
– performed sampling, stratified by malware family
– labeled according to weak supervision

https://arxiv.org/abs/1804.04637
https://github.com/endgameinc/ember

©2019 FireEye©2019 FireEye

Weak Supervision

10
https://github.com/snorkel-team/snorkel

§ Data Labeling Bottleneck
§ Ordinal Labeling Functions
– ABSTAIN = -1
– VERY_IRRELEVANT = 0
– IRRELEVANT = 1
– SEMI_IRRELEVANT = 2
– NEUTRAL = 3
– SEMI_RELEVANT = 4
– RELEVANT = 5
– VERY_RELEVANT = 6

§ cardinality = 7, tie goes NEUTRAL
§ Apply 70+ LFs over input strings,

generate probabilistic labels

https://github.com/snorkel-team/snorkel

©2019 FireEye©2019 FireEye

§ Natural Language Processing
– Entropy rate
– KL Divergence
– Markov model

§ Host, Network IoCs

§ Malware Regexes
– encodings (base64)
– format specifiers
– user agents

LF Examples

11

t

%

F

0.02

0.07
0.01

0.2

0.2

0.01

0.03

0.14

0.05

0.01

http://evil.com
\\SOFTWARE\\include\\evil.pdb

t%Ft
Vr}Y

0.018

0.014

0.007
0.001

[(‘QQQQ’, 0),
(’QQQQ’, 0),
(’PPPPP’, 0),
(’PPPPP’, 0),
(’WWWWW’, 0),
(‘SSSSS’, 0),
(’SSSSS’, 0),
…
(’VVVVV’, 0)]

[(‘~!@#$%^&*()_+`1234567890-=qwertyuiop[]\\QWERTYUIOP{}|asdfghjkl;\`ASDFGHJKL:”zxcvbnm,./ZXCVBNM<> ?’,4.55),
(‘!”#$%&\’()*+,-./0123456789:;ó?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~’, 4.54),
(‘!”#$%&\’()*+,-./0123456789:;ó?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~’, 4.54),
…
(‘!”#$%&\’()*+,-./0123456789:;ó?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~’, 4.54)][(‘\\\t\\\t\\\t\\’, 0),

(’_&\t\\`’, 0),
(’\\\to\ti’, 0),
(’a\t\\=Q’, 0),
…
(’o\ti0{’, 0)]

[(‘winter’, 0.15),
(‘Finger’, 0.16),
(‘Inter’, 0.17),
…

(’Conte’, 0.18)]

©2019 FireEye©2019 FireEye

LFApplier

12

©2019 FireEye©2019 FireEye

Learning a LabelModel

13
https://github.com/snorkel-team/snorkel

§ LFS have different:
– Accuracies
– Correlations
– Certainties

§ Learning a LabelModel
– Inverse generalized

covariance matrix of LFs
– Matrix completion (Robust PCA)

§ Snorkel @ ICML ’19
– https://arxiv.org/abs/1903.05844

https://github.com/snorkel-team/snorkel
https://arxiv.org/abs/1903.05844

©2019 FireEye©2019 FireEye

§ Gradient Boosted Decision Trees (GBDTs)
– combine outputs from multiple Decision Trees
– reduce loss using gradient descent
– weighted sum of trees’ predictions as ensemble
– LightGBM (https://github.com/microsoft/LightGBM)
§ Histogram-binned GBDTs with LTR obj. function

§ Neural networks
– tf-ranking (https://github.com/tensorflow/ranking)
– Scoring Function: defines the network
– Loss (e.g. pairwise logistic), Metrics (e.g. precision)

LTR Models

14

https://github.com/microsoft/LightGBM
https://github.com/tensorflow/ranking

©2019 FireEye©2019 FireEye

§ Normalized Discounted Cumulative Gain

– Normalized: divide DCG by ideal DCG on
a ground truth holdout dataset

– Discounted: divides each string’s predicted
relevance by a monotonically increasing
function (log of its ranked position)

– Cumulative: the cumulative gain or
summed total of every string’s relevance

– Gain: the magnitude of each string’s
relevance

Evaluation

15

©2019 FireEye©2019 FireEye

Kernel Density of Test NDCG Scores

16

StringSifter performs well on a holdout set of 7+ years of FLARE malware reports.

©2019 FireEye©2019 FireEye

Putting it All Together

17

©2019 FireEye©2019 FireEye

Demo

18

©2019 FireEye©2019 FireEye

Open Sourcing StringSifter

19

§ The tool is now live
– Command line and Docker tools
– flarestrings <my_sample> | rank_strings

§ FLOSS outputs, live memory dumps

§ Weak Supervision for Cybersecurity
– Other label-starved problems?

§ In the works
– more labeling functions, mach-o + ELF files

https://github.com/fireeye/stringsifter
pip install stringsifter

@phtully

https://github.com/fireeye/stringsifter

