

What is a String?

- Persists in compilation
- ASCII/Narrow
 - N characters + NULL
 - No file format, context
 - 0x31 0x33 0x33 0x37 0x00
 - '1337', right?
 - Not necessarily:
 - Memory addresses
 - CPU instructions
 - Data used by the program
- Unicode/Wide
 - 2 bytes, double-NULL terminated

Dec	Hex	0c	t (Char	· [)ec	Hex	0	ct	Cha	r	Dec	He>	((Oct	Cha	r	Dec	Hex	0ct	Char
0	0	0			1.1	32	20	40	0	[spac	e]	64	40	1	100	0		96	60	140	•
1	1	1			3	33	21	4	1	1.		65	41	1	101	A		97	61	141	а
2	2	2			3	34	22	42	2			66	42	1	102	В		98	62	142	b
3	3	3			1	35	23	4	3	#		67	43	1	103	С		99	63	143	С
4	4	4			13	36	24	4	4	\$		68	44	1	104	D		100	64	144	d
5	5	5			13	37	25	4	5	%		69	45	1	105	E		101	65	145	е
6	6	6			1	38	26	4	6	&		70	46	1	106	F		102	66	146	f
7	7	7			1	39	27	4	7	1.00		71	47	1	107	G		103	67	147	g
8	8	10			4	10	28	50	0	(72	48	1	110	н		104	68	150	h
9	9	11			4	1	29	5	1)		73	49	1	111	1		105	69	151	i
10	А	12			4	12	2A	52	2	*		74	4A	1	112	J		106	6A	152	j
11	В	13			4	13	2B	5	3	+		75	4B	1	113	K		107	6B	153	k
12	С	14			4	14	2C	54	4	,		76	4C	1	114	L		108	6C	154	1
13	D	15			4	15	2D	5.	5	-		77	4D	1	115	М		109	6D	155	m
14	E	16			4	16	2E	50	6			78	4E	1	116	N		110	6E	156	n
15	F	17			4	17	2F	5	7	/		79	4F	1	117	0		111	6F	157	0
16	10	20			4	18	30	6	0	0		80	50	1	120	Р		112	70	160	р
17	11	21			4	19	31	6	1	1		81	51	1	121	Q		113	71	161	q
18	12	22			5	50	32	63	2	2		82	52	1	122	R		114	72	162	r
19	13	23			5	51	33	6.	3	3		83	53	1	123	S		115	73	163	S
20	14	24			5	52	34	64	4	4		84	54	1	124	Т		116	74	164	t
21	15	25			5	53	35	6	5	5		85	55	1	125	U		117	75	165	u
22	16	26			5	54	36	6	6	6		86	56	3	126	V		118	76	166	V
23	17	27			5	55	37	6	7	7		87	57	3	127	W		119	77	167	w
24	18	30			5	6	38	70	0	8		88	58	1	130	Х		120	78	170	×
25	19	31			5	57	39	7	1	9		89	59	3	131	Y		121	79	171	У
26	1A	32			5	58	ЗA	73	2	1		90	5A	1	132	Z		122	7A	172	Z
27	1B	33			5	59	3B	7.	3	;		91	5B	1	133	[123	7B	173	{
28	1C	34			6	50	3C	74	4	<		92	5C	1	134	1		124	7C	174	
29	1D	35			6	51	3D	7.	5	=		93	5D	1	135]		125	7D	175	}
30	1E	36			6	52	3E	70	6	>		94	5E	1	136	^		126	7E	176	~
31	1F	37			6	53	3F	7	7	?		95	5F	1	137	_	1	127	7F	177	
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F	01	12345	6789	ABCDEF
000	Oh:	48	00	65	00	6C	00	6C	00	6F	00	20	00	57	00	6F	00	H.	.e.1.	1.0.	.W.o.
000001:		72	00	60	00	64	00	21	00	00	0.0								1 d	1	

The Strings Program

!This program cannot be run in DOS mode. ??3@YAXPAX@Z ??2@YAPAXI@Z CxxFrameHandler except handler3 WSAStartup() error: %d User-Agent: Mozilla/4.0 (compatible; MSIE 6.00; Windows NT 5.1) GetLastInputInfo SeShutdownPrivilege %s\IEXPLORE.EXE SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\IEXPLORE.EXE [Machine IdleTime:] %d days + %.2d:%.2d:%.2d [Machine UpTime:] %-.2d Days %-.2d Hours %-.2d Minutes %-.2d Seconds ServiceD11 SYSTEM\CurrentControlSet\Services\%s\Parameters\ if exist "%s" goto selfkill del "%s" attrib -a -r -s -h "%s" Inject '%s' to PID '%d' Successfully! \cmd.exe /c Hi, Master [%d/%d/%d %d:%d:%d]

Malware Triage

Incident Response						
Forensic analysis Identify malware sample	Binary triage Malware analysis					
	Incident Respons Forensic analysis Identify malware sample					

+SOC analysts, red teamers, malware researchers, n00bs, experts

Strings in Practice – Static Analysis

- Running Strings on larger binaries produces tens of thousands of strings.
- Strings produces a ton of noise mixed in with important information
- Knowing which strings are relevant often requires highly experienced analysts.
- Relevance is subjective and its definition can vary significantly across analysts.

©2019 FireFve

1 REU 2 S^! 3 +G] 4 K t 5 ZZU 6 YL\!JUR 7 g=0 8 MC0 9 x w 10 +']#N 11 ld@ 12 hZI 13 z\Y 14].I 15 *y0 16 Hgm 17 i6E 18 uj@ 19 H>q 20 IOVHW 21 WQ3 22 W03 23 MWO 24 CWQ 25 3WO 26)MO 27 WO 28 VV ^V 29 SV3

Hypothesis and Goals

- Develop a tool that can:
 - efficiently identify and prioritize strings
 - based on relevance for malware analysis
- StringSifter should:
 - be easy to use
 - generalize across:
 - roles, use cases, downstream apps
 - save time and money
- How does it work?

©2019 FireEye

Learning to Rank

Create optimal ordering of a list of items

- Precise individual item scores less important than their relative ordering
- In classification, regression, clustering we predict a class or single score
- LTR rarely applied in security applications

LTR as Supervised Learning

- Rank items within unseen lists in a similar way to rankings within training lists
- Each item associated with a set of features and an ordinal integer label
- Ordinal label is the teaching signal that encodes relevance level

EMBER Dataset

- Endgame Malware BEnchmark for Research
 - -v1 (1.1 million PE files scanned on or before 2017)
 - <u>https://arxiv.org/abs/1804.04637</u>
 - <u>https://github.com/endgameinc/ember</u>
 - 400k train + test malware binaries from v1
 - malware defined as > 40 VT vendors say malicious
- Ran Strings on 400k malware binaries
 - produced 3+ billion ASCII + Unicode strings (24+ GB)
 - performed sampling, stratified by malware family
 - labeled according to weak supervision

|--|

Weak Supervision

- Data Labeling Bottleneck
- Ordinal Labeling Functions
 - ABSTAIN = -1
 - VERY_IRRELEVANT = 0
 - IRRELEVANT = 1
 - SEMI_IRRELEVANT = 2
 - NEUTRAL = 3
 - SEMI_RELEVANT = 4
 - RELEVANT = 5
 - VERY_RELEVANT = 6
- cardinality = 7, tie goes NEUTRAL
- Apply 70+ LFs over input strings, generate probabilistic labels

https://github.com/snorkel-team/snorkel

snorkel

LF Examples

0.02

LFApplier

Learning a LabelModel

- LFS have different:
 - Accuracies
 - Correlations
 - Certainties
- Learning a LabelModel
 - Inverse generalized covariance matrix of LFs
 - Matrix completion (Robust PCA)
- Snorkel @ ICML '19
 - <u>https://arxiv.org/abs/1903.05844</u>

https://github.com/snorkel-team/snorkel

snorkel

LTR Models

- Gradient Boosted Decision Trees (GBDTs)
 - combine outputs from multiple Decision Trees
 - reduce loss using gradient descent
 - weighted sum of trees' predictions as ensemble
 - LightGBM (<u>https://github.com/microsoft/LightGBM</u>)
 - Histogram-binned GBDTs with LTR obj. function
- Neural networks

©2019 FireFve

- tf-ranking (https://github.com/tensorflow/ranking)
- Scoring Function: defines the network
- Loss (e.g. pairwise logistic), Metrics (e.g. precision)

Evaluation

- Normalized Discounted Cumulative Gain
 - Normalized: divide DCG by ideal DCG on a ground truth holdout dataset
 - Discounted: divides each string's predicted relevance by a monotonically increasing function (log of its ranked position)
 - Cumulative: the cumulative gain or summed total of every string's relevance
 - Gain: the magnitude of each string's relevance

Kernel Density of Test NDCG Scores

StringSifter performs well on a holdout set of 7+ years of FLARE malware reports.

Putting it All Together

Demo

18 ©2019 FireEye

Open Sourcing StringSifter

- The tool is now live
 - Command line and Docker tools
 - flarestrings <my_sample> | rank_strings
- FLOSS outputs, live memory dumps
- Weak Supervision for Cybersecurity
 - Other label-starved problems?
- In the works
 - more labeling functions, mach-o + ELF files

https://github.com/fireeye/stringsifter pip install stringsifter @phtully